
56 February 2007 ACM QUEUE rants: feedback@acmqueue.com

I
t looks like today is finally the day that we all knew was
coming—it was only a matter of time. An ambulance
has just pulled up to haul away Marty the Software

Manager after his boss pummeled him for failing to
deliver on promises of money savings, improved software
reuse, and reduced time to market that had been virtu-
ally guaranteed merely by adopting SOA (service-oriented
architecture). Everything could have been so different for
Marty. If only there had been a red-hot market for a soft-
ware application that fetched the price of London gold,
converted the price from pounds to dollars, calculated the
shipping costs for the desired quantity, and then returned
a random verse from the King James Bible. As opposed to
the currently unfolding scenario involving an ambulance,
Marty’s mental vision was one of a Brinks truck speeding
to the scene to empty coffers buckling under the strain of
overflowing cash.

Should anyone really be surprised? After all, Marty is
probably still sporting a hook in his mouth from having
been reeled in by Victor the Vendor’s SOA fishing pole.
The hype and propaganda sprinkled onto the bait that
Marty swallowed must have caused a mind-numbing
sense of euphoria that resulted in business and technical
justification for his decisions being sloughed off as mere
annoyances. Despite his headlong charge into the SOA
arena, Marty would have had a difficult time describing
SOA the same way to three different people.

In Marty’s defense, however, many people have differ-
ent ideas about what SOA is and is not. Thankfully, I have
the benefit of a 13-year-old daughter in the household,
so there is no shortage of expert opinion on any topic.
I asked her what she thought was meant by service-ori-
ented architecture. She told me that this was an approach
used for constructing the buildings where she buys,
among other things, her Hollister and American Eagle
clothing. There are certainly different opinions about
what SOA might be, but this one might be a bit extreme.

Some projects might say they are dancing the SOA
tango merely by using XML, WSDL, SOAP, and UDDI
technologies. Others may believe they are saluting the
SOA flagpole if they are using OOD and their classes are
stateless. In actuality, SOA describes an architectural style

that is independent of
using a particular technol-
ogy. This architectural style
involves advertisement of
services in some form of a

registry that clients can use to introspect, discover, hook
up to, and invoke services of their choosing. The proper-
ties associated with these services are described by SLAs
(service-level agreements), which might be measured in
terms of processing time, number of messages per min-
ute, and number of rejected transactions. SOA is enabled
by technologies such as those mentioned earlier, as well
as others such as CORBA and DCOM, which have been
around much longer.

For many software organizations, the primary
dilemma is not deciding whether or not SOA is appro-
priate to suit their development objectives, but instead
determining which technology they should use to enable
SOA and which implementation tactics best suit their
needs. Not all SOA users or prospective users even real-
ize that they have some options when it comes to how
they should use SOA to develop their products. The SOA
lemmings who fail to consider the usage tactics at their
disposal have the potential for actually causing negative
impacts to their software architectures as opposed to capi-
talizing on some of the benefits that SOA truly does offer.

I wonder which straw finally broke Marty’s back. In an
effort to be good SOA practitioners, did Marty’s software
staff generalize some of their services to such an extent
that they were not able to meet even their own product’s
needs? Specifically, the idea of developing distributed
infix operations where users input a numerical radix
upon which service requests should be based sounded
good, but the performance impacts of remote process
invocations simply to add and subtract numbers might
have been a bit of an SOA stretch. Even though the infix
operations were written with the hallmark SOA quali-
ties of being discoverable, stateless, composable, and not
dependent on any other services, an SOA style must be
selectively applied and used only where appropriate to
do so.

DOA with SOA

Alex Bell, The Boeing Company

curmudgeon

Adopting THIS

ARCHITECTURAL STYLE

IS NO CURE-ALL

Continued on page 54

wand
Highlight
Hey, we're buzzword-compliant

wand
Highlight
Sounds like the "inventory" step of the Design Recipe to me.

54 February 2007 ACM QUEUE rants: feedback@acmqueue.com

Perhaps Marty’s misfortune was an after-effect of firing
all of his systems engineers because of a belief that adop-
tion of SOA transformed the traditional software life cycle
into one where the only relevant activities were devel-
opment and integration. There is a lot of money to be
saved by expecting jack-in-the-box system architectures
just to pop up amidst a collection of services as opposed
to investing time and effort on traditional engineering
activities. After all, in the event that performance or
usability issues arise as a result of the absence of systems
engineering activities, the mitigation tactics are simply to
discover and hook up to new services with better SLAs!

There might be yet another possibility at the root of
Marty’s looming ambulance ride: Did his staff choose
the wrong level of abstraction with which to implement
SOA? As opposed to service users hooking into services
directly at the “stub” level, there are often circumstances
where a service layer encapsulating such stubs has the
potential of improving important properties for those
service users, including performance, availability, and
survivability. Specifically, performance can be improved
by short-circuiting remote method invocations in the
event that requested information has been previously
fetched. Availability can be improved by the service layer

hooking up to alternate service providers in the case of
failures or SLA violations. Survivability can be improved
by providing service users with some fidelity of reply even
if connectivity to the actual service provider is temporar-
ily unavailable.

As previously mentioned, the benefits of encapsulation
should not be ignored when selecting the tactics with

which to best implement SOA. In fact, even in the con-
text of my daughter’s rather, ahem, interesting definition
of SOA, she recognizes the value of encapsulation: “Dad,
I can wear and enjoy my clothes without having to know
any of the details of how they were made.” Perhaps your
SOA tactics should heed these wise words and similarly
hide applicable implementation details from service users.

Continued from page 56

curmudgeon

Adoption of SOA did not
constitute authorization
for Marty to ignore
best practices.

SIP: Telephony and Beyond

Web Development’s New Era

The Wonders of Pub-Sub

What’s Coming in Queue

ACM QUEUE February 2007 55 more queue: www.acmqueue.com

Why should a user of an extremely simple service be
bothered with having to know about UDDI, for example,
when all that is needed is the monthly payment for a
given principal, periodic interest rate, and duration of
loan? A preferred implementation may be to hide UDDI
from users of such services beneath a service layer.

Unless a project is merely gluing together simple
services such as those that involve fetching stock prices,
querying the weather of a specific lat/long, or requesting
the zip code(s) for a particular city, adopting SOA should
not generally change a traditional software life cycle.
Sure, some development activities might be shortened
as the result of reusing certain components which can
be purchased, but how often is one able to actually buy
preexisting components that provide a product’s core
“business logic”? On the flip side of the reuse coin, how
many software managers are actually willing to adjust
their development schedules, investing time to find out
how a particular component they imminently require
can be generalized or specialized to meet the needs of
unknown or future users? Meeting software reuse goals to
any significant extent, such as those supporting prod-
uct-line aspirations, generally requires engineering and
planning as opposed to simply happening as the result of
adopting SOA.

Sadly, Marty did not make it to the hospital. Which-
ever combination of misguided business decisions and
implementation tactics may have finally led to his
demise, Marty was DOA, just like his SOA project. It did
not have to be this way. Adoption of SOA did not con-
stitute authorization for Marty to ignore best practices or
to show contempt for common sense. How about you?
How is your SOA health? Do you presume that SOA can
be enabled only by Web services? Do you believe that the
benefit of properties such as encapsulation and abstrac-
tion are important only in “old-fashioned” architectural
approaches? Has implementing your definition of SOA
resulted in elimination of any major engineering activi-
ties? Pay close attention to how you answer. You will not
want to miss the warning signs of potentially being DOA
with SOA. Q

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

ALEX BELL is a software architect with The Boeing Com-
pany. He has written several pieces for ACM Queue including
“Death by UML Fever” (March 2004) and “Software Devel-
opment Amidst the Whiz of Silver Bullets” (June 2006).
© 2007 ACM 1542-7730/07/0200 $5.00

