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Motivation: Continuations, VMs, and the Web

We present a translation for eliminating call/cc using
PLT Scheme’s Continuation Marks and prove
correctness of the translation.
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Motivation: Continuations, VMs, and the Web

We present a translation for eliminating call/cc using
PLT Scheme’s Continuation Marks and prove
correctness of the translation.

� First consider two situations that expose the
requirements for the translation:

1. Web programming with continuations

2. Implementing call/cc on standard VMs
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Continuations and the Web

When an interactive Web program issues a Web
response, the client may decide to answer the response
zero or more times, thus re-launching the
rest of the servlet’s computation zero or more times.
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Continuations and the Web

When an interactive Web program issues a Web
response, the client may decide to answer the response
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rest of the servlet’s computation zero or more times.

� The “rest of the servlet’s computation” is essentially a
continuation that must be stored and used possibly
several times.

Continuations from Generalized Stack Inspection – p.3/38



Continuations and the Web

When an interactive Web program issues a Web
response, the client may decide to answer the response
zero or more times, thus re-launching the
rest of the servlet’s computation zero or more times.

� The “rest of the servlet’s computation” is essentially a
continuation that must be stored and used possibly
several times.

� This has lead many to believe that a servlet language
that supports first-class continuations is a natural
choice for the Web.
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Two Approaches to Servlets

We have explored two approaches to continuation
based Web programming:
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Two Approaches to Servlets

We have explored two approaches to continuation
based Web programming:

1. Start with a language that already has native
support for continuations and add Web programming
capabilities via a custom Web server.

2. Start with a Web programming language that
also has continuations and automatically restructure
Web programs to run on a standard framework.
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Native Continuations
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Native Continuations

- Requires support from a custom Web server.
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Native Continuations

- Requires support from a custom Web server.

- Continuations are separated from Web Responses.

- Storing continuations uses resources on the server.

- Must essentially guess the lifetime of a continuation.
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Automatic Restructuring of Web Programs
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Automatic Restructuring of Web Programs

+ The translation has control over the representation of
continuaions.
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Automatic Restructuring of Web Programs

+ The translation has control over the representation of
continuaions.

+ No longer need a custom Web server.

+ Continuations can be encoded in the Web Response,
perhaps even in the URL. Can therefore avoid storing
extra resources on the server and can support
bookmarking.
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Automatic Restructuring of Web Programs

+ The translation has control over the representation of
continuaions.

+ No longer need a custom Web server.

+ Continuations can be encoded in the Web Response,
perhaps even in the URL. Can therefore avoid storing
extra resources on the server and can support
bookmarking.

+ Continuation expires exactly when the Response goes
out of existence. Perfect!
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Implementing Scheme on Standard VMs

Standard VMs do not provide direct support for
installing and saving the runtime stack.
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Implementing Scheme on Standard VMs

Standard VMs do not provide direct support for
installing and saving the runtime stack.

� Give up on call/cc

� Translate programs to a form that does not rely on
direct support for call/cc
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call/cc – CPS Approach
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call/cc – CPS Approach

- CPS is a whole program transformation that changes
the calling signature for each function in the program.
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call/cc – CPS Approach

- CPS is a whole program transformation that changes
the calling signature for each function in the program.

- CPS programs essentially manage their own stack on
the heap.

- Need proper tail calls or else use a trampoline.

- Implementing the stack on the heap precludes using
standard tools and runtime optimizations.
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call/cc – CMT Approach

We offer an alternative: Continuation Mark Transform.
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+ Does not change calling signature for functions.
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interfere with standard tools or optimizations.
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call/cc – CMT Approach

We offer an alternative: Continuation Mark Transform.

+ Does not rely on any special support from the VM.

+ Does not change calling signature for functions.

+ Permits conventional use of the stack and so does not
interfere with standard tools or optimizations.

+ Transformation can be applied locally without
disrupting “most” function calls.
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Let’s Translate

(define (f l)
(case l
(cons a l′) ⇒ (cons (g a) (f l′))
(nil) ⇒ (nil)))
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A-Normalize

(define (f l)
(case l
(cons a l′) ⇒ (let (x (g a))

(let (l ′′ (f l
′))

(cons x l
′′)))

(nil) ⇒ (nil)))

Continuations from Generalized Stack Inspection – p.11/38



A-Normalize

(define (f l)
(case l
(cons a l′) ⇒ (let (x (g a))

(let (l ′′ (f l
′))

(cons x l
′′)))

(nil) ⇒ (nil)))
� A-Normal form names each intermediate value.
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A-Normalize

(define (f l)
(case l
(cons a l′) ⇒ (let (x (g a))

(let (l ′′ (f l
′))

(cons x l
′′)))

(nil) ⇒ (nil)))
� A-Normal form names each intermediate value.
� What we really want is the continuation of each

intermediate computation.
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Eliminate Let

(define (f l)
(case l
(cons a l′) ⇒ ((λ (x)

((λ (l ′′) (cons x l
′′))

(f l
′)))

(g a))
(nil) ⇒ (nil)))
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Eliminate Let

(define (f l)
(case l
(cons a l′) ⇒ ((λ (x)

((λ (l ′′) (cons x l
′′))

(f l
′)))

(g a))
(nil) ⇒ (nil)))

� Now each fragment of the continuation is explicitly
represented as a lambda expression.
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Evaluation Context

((λ (l′′) (cons B0 l′′))
· · ·

((λ (l′′) (cons Bn−1 l′′))
((λ (x)

((λ (l′′) (cons x l′′))
(f Ln)))

[ ])) · · ·)
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Evaluation Context

((λ (l′′) (cons B0 l′′))
· · ·

((λ (l′′) (cons Bn−1 l′′))
((λ (x)

((λ (l′′) (cons x l′′))
(f Ln)))

[ ])) · · ·)
� What do the evaluation contexts look like?
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Evaluation Context

((λ (l ′′) (cons B0 l
′′))

· · ·
((λ (l ′′) (cons Bn-1 l

′′))
((λ (x)

((λ (l′′) (cons x l′′))
(f Ln)))

[ ])) · · ·)
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Evaluation Context

((λ (l ′′) (cons B0 l
′′))

· · ·
((λ (l ′′) (cons Bn-1 l

′′))
((λ (x)

((λ (l′′) (cons x l′′))
(f Ln)))

[ ])) · · ·)
� E = [ ] | ((λ · · ·) E)
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Evaluation Context

((λ (l ′′) (cons B0 l
′′))

· · ·
((λ (l ′′) (cons Bn-1 l

′′))
((λ (x)

((λ (l′′) (cons x l′′))
(f Ln)))

[ ])) · · ·)
� E = [ ] | ((λ · · ·) E)
� Evaluation contexts are just chains of lambda

applications.
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Continuation Marks and CMT
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Continuation Marks and CMT

� In the model langauge evaluation contexts are
completely determined as sequences of lambda
expressions.
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Continuation Marks Basics

Continuation marks allow you to store extra information in
the continuation of an expression and possibly retrieve it
later.
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Continuation marks allow you to store extra information in
the continuation of an expression and possibly retrieve it
later.

� Values are embedded in the continuation using w-c-m
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Continuation Marks Basics

Continuation marks allow you to store extra information in
the continuation of an expression and possibly retrieve it
later.

� Values are embedded in the continuation using w-c-m

� All such values embedded in the current continuation
are recovered using c-c-m
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Continuation Marks Example

(define (f l)
(case l
(nil) ⇒ (nil)
(cons x l′) ⇒ (cons (g x) (f l′))))
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Continuation Marks Example

(define (f l)
(case l
(nil) ⇒ (begin

(display (c-c-m))
(nil))

(cons x l′) ⇒ (w-c-m x

(cons (g x) (f l′)))))
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Continuation Marks Example

(define (f l)
(case l
(nil) ⇒ (begin

(display (c-c-m))
(nil))

(cons x l′) ⇒ (w-c-m x

(cons (g x) (f l′)))))

(f (cons 0 (cons 1 (cons 2 (nil)))))

Continuations from Generalized Stack Inspection – p.18/38



Continuation Marks Example

(define (f l)
(case l
(nil) ⇒ (begin

(display (c-c-m))
(nil))

(cons x l′) ⇒ (w-c-m x

(cons (g x) (f l′)))))

(f (cons 0 (cons 1 (cons 2 (nil)))))

eval
−→

∗

(cons (g 0) (cons (g 1) (cons (g 2) (nil))))
Console Output: (list 0 1 2 3)
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Where the Marks Go

� Recall that evaluation contexts are just
appplications of lambdas
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Where the Marks Go

� Recall that evaluation contexts are just
appplications of lambdas

((λ (x0) · · ·)
((λ (x1) · · ·)
· · ·))
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Where the Marks Go

� Recall that evaluation contexts are just
appplications of lambdas

((λ (x0) · · ·)
((λ (x1) · · ·)
· · ·))

(w-c-m (λ (x0 ) · · · )
((λ (x0) · · ·)

(w-c-m (λ (x1 ) · · · )
((λ (x1) · · ·)
· · ·))))
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Where the Marks Go

� Recall that evaluation contexts are just
appplications of lambdas

((λ (x0) · · ·)
((λ (x1) · · ·)
· · ·))

(w-c-m (λ (x0 ) · · · )
((λ (x0) · · ·)

(w-c-m (λ (x1 ) · · · )
((λ (x1) · · ·)
· · ·))))

� E = [ ] | (w-c-m (λ · · ·) ((λ · · ·) E))
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Recovering the Marks

c-c-m can then be used to tease out the continuation.
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Recovering the Marks

c-c-m can then be used to tease out the continuation.

(w-c-m (λ (x0) · · ·)
((λ (x0) · · ·)
(w-c-m (λ (x1) · · ·)

((λ (x1) · · ·)
(λ (m)

(λ (v)
(abort (resume m v))))

(c-c-m))))))
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Recovering the Marks

c-c-m can then be used to tease out the continuation.

(w-c-m (λ (x0) · · ·)
((λ (x0) · · ·)
(w-c-m (λ (x1) · · ·)

((λ (x1) · · ·)
(λ (m)

(λ (v)
(abort (resume m v))))

(c-c-m))))))

eval
−→

∗

(λ (v)
(abort (resume (list (λ (x0) · · ·) (λ (x1) · · ·)) v)))
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Resume

We need a helper function to reconstitute the stack using
the results of a c-c-m
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Resume

We need a helper function to reconstitute the stack using
the results of a c-c-m

(define (resume l v)
(case l
(nil) ⇒ v
(cons f l′) ⇒ (f (w-c-m f (resume l′ v)))))
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Reconstitution Theorem

CMT [[Σ]]/(resume X (CMT [[E ′]]) CMT [[v]])

→+

TL CMT [[Σ]]/CMT [[E ′]][CMT [[v]]]
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Reconstitution Theorem

CMT [[Σ]]/(resume X (CMT [[E ′]]) CMT [[v]])

→+

TL CMT [[Σ]]/CMT [[E ′]][CMT [[v]]]

� resume faithfully reconstitutes the stack

Continuations from Generalized Stack Inspection – p.22/38



Putting It All Together

((λ (x0) · · ·)
· · ·

((λ (xn) · · ·) [ ]))
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Putting It All Together

((λ (x0) · · ·)
· · ·

((λ (xn) · · ·) [ ]))

CMT
−→
(λ (v)

(abort (resume (list (λ (x0) · · ·) · · · (λ (xn) · · ·)) v)))
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Putting It All Together

((λ (x0) · · ·)
· · ·

((λ (xn) · · ·) [ ]))

CMT
−→
(λ (v)

(abort (resume (list (λ (x0) · · ·) · · · (λ (xn) · · ·)) v)))

((λ (v)
(abort (resume (list (λ (x0) · · ·) · · · (λ (xn) · · ·)) v)))

7)
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Putting It All Together

((λ (x0) · · ·)
· · ·

((λ (xn) · · ·) [ ]))

CMT
−→
(λ (v)

(abort (resume (list (λ (x0) · · ·) · · · (λ (xn) · · ·)) v)))

((λ (v)
(abort (resume (list (λ (x0) · · ·) · · · (λ (xn) · · ·)) v)))

7)

eval
−→

∗

((λ (x0) · · ·)
· · ·

((λ (xn) · · ·) [7]))
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Evaluation Theorem

CMT [[evalSL(p)]] = evalTL(CMT [[p]])
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Evaluation Theorem

CMT [[evalSL(p)]] = evalTL(CMT [[p]])

E [e]
eval
−→ E ′[e′]

| |

CMT CMT

↓ ↓

[[E [e]]]
eval
−→

+

[[E ′[e′]]]
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Defunctionalization
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Defunctionalization

� Still need to make continuations serializable.
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Defunctionalization

� Still need to make continuations serializable.
� Continuation values are now just lists of lambdas.
� Use standard defunctionalization to replace lambda

constructed values with serializable data structures.
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Pragmatics

Recall that we wanted to avoid whole-program
transformation

Continuations from Generalized Stack Inspection – p.26/38
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Recall that we wanted to avoid whole-program
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� CMT does not change the calling signature of
functions, so it can be applied locally.
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� CMT does not change the calling signature of
functions, so it can be applied locally.

� The translated code will work fine in most contexts.
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Pragmatics

Recall that we wanted to avoid whole-program
transformation

� CMT does not change the calling signature of
functions, so it can be applied locally.

� The translated code will work fine in most contexts.
� There’s a problem when an untranslated function calls

a translated function that then attempts to capture a
continuation.
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Problem Details
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Problem Details

� In our model language stack frames are lambda
applications.
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Problem Details

� In our model language stack frames are lambda
applications.

� Translated frames are explicitly marked with their
lambdas, while untranslated frames are not marked.

Continuations from Generalized Stack Inspection – p.27/38



Problem Details

� In our model language stack frames are lambda
applications.

� Translated frames are explicitly marked with their
lambdas, while untranslated frames are not marked.

� If a continuation capture is attempted while the stack
contains unmarked frames, then the resulting
continuation value will have bits missing.
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Problem Details

� In our model language stack frames are lambda
applications.

� Translated frames are explicitly marked with their
lambdas, while untranslated frames are not marked.

� If a continuation capture is attempted while the stack
contains unmarked frames, then the resulting
continuation value will have bits missing.

� This will cause undefined behavior.
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Solution Strategy

Use continuation marks to delimit untranslated
portions of the stack.
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Solution Strategy

Use continuation marks to delimit untranslated
portions of the stack.

� Every function application is given a special “safety”
mark.
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Solution Strategy

Use continuation marks to delimit untranslated
portions of the stack.

� Every function application is given a special “safety”
mark.

� Whenever a continuation is captured inspect the list of
safety marks.
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Solution Strategy

Use continuation marks to delimit untranslated
portions of the stack.

� Every function application is given a special “safety”
mark.

� Whenever a continuation is captured inspect the list of
safety marks.

� Undefined behavior is avoided by signalling an error.
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Solution Strategy

Use continuation marks to delimit untranslated
portions of the stack.

� Every function application is given a special “safety”
mark.

� Whenever a continuation is captured inspect the list of
safety marks.

� Undefined behavior is avoided by signalling an error.
� Need to take a closer look at Continuation marks.
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Continuation Marks and Tail-Calls

A Continuation Mark that is in Tail Position with
respect to an enclosing Continuation Mark will
overwrite the value of the enclosing Continuation
Mark.
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Continuation Marks and Tail-Calls

A Continuation Mark that is in Tail Position with
respect to an enclosing Continuation Mark will
overwrite the value of the enclosing Continuation
Mark.

� (w-c-m 7 (w-c-m 8 (f · · ·)))
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Continuation Marks and Tail-Calls

A Continuation Mark that is in Tail Position with
respect to an enclosing Continuation Mark will
overwrite the value of the enclosing Continuation
Mark.

� (w-c-m 7 (w-c-m 8 (f · · ·)))
� (w-c-m 8 (f · · ·)) is in Tail Position w.r.t. (w-c-m 7 · · ·)
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Continuation Marks and Tail-Calls

A Continuation Mark that is in Tail Position with
respect to an enclosing Continuation Mark will
overwrite the value of the enclosing Continuation
Mark.

� (w-c-m 7 (w-c-m 8 (f · · ·)))
� (w-c-m 8 (f · · ·)) is in Tail Position w.r.t. (w-c-m 7 · · ·)
� (w-c-m 7 · · ·) encloses (w-c-m 8 (f · · ·))
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Continuation Marks and Tail-Calls

A Continuation Mark that is in Tail Position with
respect to an enclosing Continuation Mark will
overwrite the value of the enclosing Continuation
Mark.

� (w-c-m 7 (w-c-m 8 (f · · ·)))
� (w-c-m 8 (f · · ·)) is in Tail Position w.r.t. (w-c-m 7 · · ·)
� (w-c-m 7 · · ·) encloses (w-c-m 8 (f · · ·))
� Simplifies to: (w-c-m 8 (f · · ·))
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Example with Tail Calls

(define (f-cps k l)
(case l
(nil) ⇒ (k (nil))
(cons x l′) ⇒ (f-cps (λ (l′′) (g (λ (x′) (k (cons x′ l′′)) x)))

l′)))
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Example with Tail Calls

(define (f-cps k l)
(case l
(nil) ⇒ (begin

(display (c-c-m))
(k (nil)))

(cons x l′) ⇒ (w-c-m x

(f-cps (λ (l′′) (g (λ (x′) (k (cons x′ l′′))) x))
l′))))
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Example with Tail Calls

(define (f-cps k l)
(case l
(nil) ⇒ (begin

(display (c-c-m))
(k (nil)))

(cons x l′) ⇒ (w-c-m x

(f-cps (λ (l′′) (g (λ (x′) (k (cons x′ l′′))) x))
l′))))

(f (λ (x) x) (cons 0 (cons 1 (cons 2 (nil)))))
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Example with Tail Calls

(define (f-cps k l)
(case l
(nil) ⇒ (begin

(display (c-c-m))
(k (nil)))

(cons x l′) ⇒ (w-c-m x

(f-cps (λ (l′′) (g (λ (x′) (k (cons x′ l′′))) x))
l′))))

(f (λ (x) x) (cons 0 (cons 1 (cons 2 (nil)))))

eval
−→

∗

(cons (g 0) (cons (g 1) (cons (g 2) (nil))))
Console Output: (list 3)
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Continuation Marks – Extended Interface

The interface for Continuation Marks can be extended to
allow for multiple disjoint sets of Continuation Marks.
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Continuation Marks – Extended Interface

The interface for Continuation Marks can be extended to
allow for multiple disjoint sets of Continuation Marks.
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Continuation Marks – Extended Interface

The interface for Continuation Marks can be extended to
allow for multiple disjoint sets of Continuation Marks.

� w-c-m accepts an additional value that acts as a key
identifying to which set the mark belongs.

� c-c-m accepts a key argument identifying which set of
marks to recover.
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Extended Interface Example

(w-c-m “Fred” 0
(f0 (w-c-m “Barney” 1

(f1 (w-c-m “Fred” 2
(f2 (w-c-m “Barney” 3

(begin
(printf “Fred: ˜a˜n” (c-c-m “Fred”))
(printf “Barney: ˜a˜n” (c-c-m “Barney”))
19))))))))
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Extended Interface Example

(w-c-m “Fred” 0
(f0 (w-c-m “Barney” 1

(f1 (w-c-m “Fred” 2
(f2 (w-c-m “Barney” 3

(begin
(printf “Fred: ˜a˜n” (c-c-m “Fred”))
(printf “Barney: ˜a˜n” (c-c-m “Barney”))
19))))))))

eval
−→

∗

(f0 (f1 (f2 19)))
Console Output:

Fred: (list 0 2)
Barney: (list 1 3)
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Example – map

(define (map f l)
(case l
(cons x l′) ⇒ (cons (f x) (map f l′))
(nil) ⇒ (nil)))
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Example – map

(define (map f l)
(case l
(cons x l′) ⇒ (cons (f x) (map f l′))
(nil) ⇒ (nil)))

· · · (map f l) · · ·
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Example – map

(define (map f l)
(case l
(cons x l′) ⇒ (cons (f x) (map f l′))
(nil) ⇒ (nil)))

· · · (map f l) · · ·

· · · (w-c-m “safe” false (map f l)) · · ·
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Example – map

(define (map f l)
(case l
(cons x l′) ⇒ (cons (f x) (map f l′))
(nil) ⇒ (nil)))

· · · (map f l) · · ·

· · · (w-c-m “safe” false (map f l)) · · ·

eval
−→

∗

· · · (w-c-m “safe” false (cons (f x) · · ·)) · · ·
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Example – safe-map

(define (safe-map f l)
(w-c-m “safe” true
· · ·))
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Example – safe-map

(define (safe-map f l)
(w-c-m “safe” true
· · ·))

· · · (safe-map f l) · · ·
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Example – safe-map

(define (safe-map f l)
(w-c-m “safe” true
· · ·))

· · · (safe-map f l) · · ·

· · · (w-c-m “safe” false (safe-map f l)) · · ·
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Example – safe-map

(define (safe-map f l)
(w-c-m “safe” true
· · ·))

· · · (safe-map f l) · · ·

· · · (w-c-m “safe” false (safe-map f l)) · · ·

eval
−→

∗

· · · (w-c-m “safe” false (w-c-m “safe” true · · ·)) · · ·
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Example – safe-map

(define (safe-map f l)
(w-c-m “safe” true
· · ·))

· · · (safe-map f l) · · ·

· · · (w-c-m “safe” false (safe-map f l)) · · ·

eval
−→

∗

· · · (w-c-m “safe” false (w-c-m “safe” true · · ·)) · · ·

eval
−→

∗

· · · (w-c-m “safe” true · · ·) · · ·
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Partial Solution

Continuation Marks allow us to detect when a
continuation capture could lead to undefined behavior
and instead signal an error.
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Partial Solution

Continuation Marks allow us to detect when a
continuation capture could lead to undefined behavior
and instead signal an error.

� Translation can be applied locally.
� Special cases will lead lead to a run-time error.
� Some higher-order functions will have to be translated.
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Exceptions as Continuation Marks

Our translation offers an alternative to CPS for
implementing first-class continuations on traditional
VMs.
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Exceptions as Continuation Marks

Our translation offers an alternative to CPS for
implementing first-class continuations on traditional
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� Conventional VMs don’t implement continuation marks
but do implement exceptions.
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� Conventional VMs don’t implement continuation marks
but do implement exceptions.

� We show that exceptions can simulate continuation
marks.

Continuations from Generalized Stack Inspection – p.37/38



Exceptions as Continuation Marks

Our translation offers an alternative to CPS for
implementing first-class continuations on traditional
VMs.

� Conventional VMs don’t implement continuation marks
but do implement exceptions.

� We show that exceptions can simulate continuation
marks.

� (w-c-m) corresponds to intalling an exception handler.
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Exceptions as Continuation Marks

Our translation offers an alternative to CPS for
implementing first-class continuations on traditional
VMs.

� Conventional VMs don’t implement continuation marks
but do implement exceptions.

� We show that exceptions can simulate continuation
marks.

� (w-c-m) corresponds to intalling an exception handler.
� (c-c-m) corresponds to throwing an exception.
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Exceptions as Continuation Marks

· · · (c-c-m) · · ·
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Exceptions as Continuation Marks

· · · (c-c-m) · · ·

7→
· · · (w-c-m “safe” false (w-c-m “safe” true · · ·)) · · ·
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Exceptions as Continuation Marks

· · · (c-c-m) · · ·

7→
· · · (w-c-m “safe” false (w-c-m “safe” true · · ·)) · · ·

(w-c-m (λ · · ·)
((λ · · ·) · · ·))

Continuations from Generalized Stack Inspection – p.38/38



Exceptions as Continuation Marks

· · · (c-c-m) · · ·

7→
· · · (w-c-m “safe” false (w-c-m “safe” true · · ·)) · · ·

(w-c-m (λ · · ·)
((λ · · ·) · · ·))

7→
(try ((lambda · · ·) · · ·) (catch exn (throw (cons (lambda
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Exceptions as Continuation Marks

· · · (c-c-m) · · ·

7→
· · · (w-c-m “safe” false (w-c-m “safe” true · · ·)) · · ·

(w-c-m (λ · · ·)
((λ · · ·) · · ·))

7→
(try ((lambda · · ·) · · ·) (catch exn (throw (cons (lambda
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