
Continuations from Generalized Stack Inspection

Greg Pettyjohn
Northeastern University

John Clements
Northeastern University

Joe Marshall
Northeastern University

Shriram Krishnamurthi
Brown Univerity

Matthias Felleisen
Northeastern University

Continuations from Generalized Stack Inspection – p.1/38



Motivation: Continuations, VMs, and the Web

We present a translation for eliminating call/cc using
PLT Scheme’s Continuation Marks and prove
correctness of the translation.

Continuations from Generalized Stack Inspection – p.2/38



Motivation: Continuations, VMs, and the Web

We present a translation for eliminating call/cc using
PLT Scheme’s Continuation Marks and prove
correctness of the translation.

� First consider two situations that expose the
requirements for the translation:

Continuations from Generalized Stack Inspection – p.2/38



Motivation: Continuations, VMs, and the Web

We present a translation for eliminating call/cc using
PLT Scheme’s Continuation Marks and prove
correctness of the translation.

� First consider two situations that expose the
requirements for the translation:

1. Web programming with continuations

Continuations from Generalized Stack Inspection – p.2/38



Motivation: Continuations, VMs, and the Web

We present a translation for eliminating call/cc using
PLT Scheme’s Continuation Marks and prove
correctness of the translation.

� First consider two situations that expose the
requirements for the translation:

1. Web programming with continuations

2. Implementing call/cc on standard VMs

Continuations from Generalized Stack Inspection – p.2/38



Continuations and the Web

When an interactive Web program issues a Web
response, the client may decide to answer the response
zero or more times, thus re-launching the
rest of the servlet’s computation zero or more times.

Continuations from Generalized Stack Inspection – p.3/38



Continuations and the Web

When an interactive Web program issues a Web
response, the client may decide to answer the response
zero or more times, thus re-launching the
rest of the servlet’s computation zero or more times.

� The “rest of the servlet’s computation” is essentially a
continuation that must be stored and used possibly
several times.

Continuations from Generalized Stack Inspection – p.3/38



Continuations and the Web

When an interactive Web program issues a Web
response, the client may decide to answer the response
zero or more times, thus re-launching the
rest of the servlet’s computation zero or more times.

� The “rest of the servlet’s computation” is essentially a
continuation that must be stored and used possibly
several times.

� This has lead many to believe that a servlet language
that supports first-class continuations is a natural
choice for the Web.

Continuations from Generalized Stack Inspection – p.3/38



Two Approaches to Servlets

We have explored two approaches to continuation
based Web programming:

Continuations from Generalized Stack Inspection – p.4/38



Two Approaches to Servlets

We have explored two approaches to continuation
based Web programming:

1. Start with a language that already has native
support for continuations and add Web programming
capabilities via a custom Web server.

Continuations from Generalized Stack Inspection – p.4/38



Two Approaches to Servlets

We have explored two approaches to continuation
based Web programming:

1. Start with a language that already has native
support for continuations and add Web programming
capabilities via a custom Web server.

2. Start with a Web programming language that
also has continuations and automatically restructure
Web programs to run on a standard framework.

Continuations from Generalized Stack Inspection – p.4/38



Native Continuations

Continuations from Generalized Stack Inspection – p.5/38



Native Continuations

- Requires support from a custom Web server.

Continuations from Generalized Stack Inspection – p.5/38



Native Continuations

- Requires support from a custom Web server.

- Continuations are separated from Web Responses.

Continuations from Generalized Stack Inspection – p.5/38



Native Continuations

- Requires support from a custom Web server.

- Continuations are separated from Web Responses.

- Storing continuations uses resources on the server.

Continuations from Generalized Stack Inspection – p.5/38



Native Continuations

- Requires support from a custom Web server.

- Continuations are separated from Web Responses.

- Storing continuations uses resources on the server.

- Must essentially guess the lifetime of a continuation.

Continuations from Generalized Stack Inspection – p.5/38



Automatic Restructuring of Web Programs

Continuations from Generalized Stack Inspection – p.6/38



Automatic Restructuring of Web Programs

+ The translation has control over the representation of
continuaions.

Continuations from Generalized Stack Inspection – p.6/38



Automatic Restructuring of Web Programs

+ The translation has control over the representation of
continuaions.

+ No longer need a custom Web server.

Continuations from Generalized Stack Inspection – p.6/38



Automatic Restructuring of Web Programs

+ The translation has control over the representation of
continuaions.

+ No longer need a custom Web server.

+ Continuations can be encoded in the Web Response,
perhaps even in the URL. Can therefore avoid storing
extra resources on the server and can support
bookmarking.

Continuations from Generalized Stack Inspection – p.6/38



Automatic Restructuring of Web Programs

+ The translation has control over the representation of
continuaions.

+ No longer need a custom Web server.

+ Continuations can be encoded in the Web Response,
perhaps even in the URL. Can therefore avoid storing
extra resources on the server and can support
bookmarking.

+ Continuation expires exactly when the Response goes
out of existence. Perfect!

Continuations from Generalized Stack Inspection – p.6/38



Implementing Scheme on Standard VMs

Standard VMs do not provide direct support for
installing and saving the runtime stack.

Continuations from Generalized Stack Inspection – p.7/38



Implementing Scheme on Standard VMs

Standard VMs do not provide direct support for
installing and saving the runtime stack.

� Give up on call/cc

Continuations from Generalized Stack Inspection – p.7/38



Implementing Scheme on Standard VMs

Standard VMs do not provide direct support for
installing and saving the runtime stack.

� Give up on call/cc

� Translate programs to a form that does not rely on
direct support for call/cc

Continuations from Generalized Stack Inspection – p.7/38



call/cc – CPS Approach

Continuations from Generalized Stack Inspection – p.8/38



call/cc – CPS Approach

- CPS is a whole program transformation that changes
the calling signature for each function in the program.

Continuations from Generalized Stack Inspection – p.8/38



call/cc – CPS Approach

- CPS is a whole program transformation that changes
the calling signature for each function in the program.

- CPS programs essentially manage their own stack on
the heap.

Continuations from Generalized Stack Inspection – p.8/38



call/cc – CPS Approach

- CPS is a whole program transformation that changes
the calling signature for each function in the program.

- CPS programs essentially manage their own stack on
the heap.

- Need proper tail calls or else use a trampoline.

Continuations from Generalized Stack Inspection – p.8/38



call/cc – CPS Approach

- CPS is a whole program transformation that changes
the calling signature for each function in the program.

- CPS programs essentially manage their own stack on
the heap.

- Need proper tail calls or else use a trampoline.

- Implementing the stack on the heap precludes using
standard tools and runtime optimizations.

Continuations from Generalized Stack Inspection – p.8/38



call/cc – CMT Approach

We offer an alternative: Continuation Mark Transform.

Continuations from Generalized Stack Inspection – p.9/38



call/cc – CMT Approach

We offer an alternative: Continuation Mark Transform.

+ Does not rely on any special support from the VM.

Continuations from Generalized Stack Inspection – p.9/38



call/cc – CMT Approach

We offer an alternative: Continuation Mark Transform.

+ Does not rely on any special support from the VM.

+ Does not change calling signature for functions.

Continuations from Generalized Stack Inspection – p.9/38



call/cc – CMT Approach

We offer an alternative: Continuation Mark Transform.

+ Does not rely on any special support from the VM.

+ Does not change calling signature for functions.

+ Permits conventional use of the stack and so does not
interfere with standard tools or optimizations.

Continuations from Generalized Stack Inspection – p.9/38



call/cc – CMT Approach

We offer an alternative: Continuation Mark Transform.

+ Does not rely on any special support from the VM.

+ Does not change calling signature for functions.

+ Permits conventional use of the stack and so does not
interfere with standard tools or optimizations.

+ Transformation can be applied locally without
disrupting “most” function calls.

Continuations from Generalized Stack Inspection – p.9/38



Let’s Translate

(define (f l)
(case l
(cons a l′) ⇒ (cons (g a) (f l′))
(nil) ⇒ (nil)))

Continuations from Generalized Stack Inspection – p.10/38



A-Normalize

(define (f l)
(case l
(cons a l′) ⇒ (let (x (g a))

(let (l ′′ (f l
′))

(cons x l
′′)))

(nil) ⇒ (nil)))

Continuations from Generalized Stack Inspection – p.11/38



A-Normalize

(define (f l)
(case l
(cons a l′) ⇒ (let (x (g a))

(let (l ′′ (f l
′))

(cons x l
′′)))

(nil) ⇒ (nil)))
� A-Normal form names each intermediate value.

Continuations from Generalized Stack Inspection – p.11/38



A-Normalize

(define (f l)
(case l
(cons a l′) ⇒ (let (x (g a))

(let (l ′′ (f l
′))

(cons x l
′′)))

(nil) ⇒ (nil)))
� A-Normal form names each intermediate value.
� What we really want is the continuation of each

intermediate computation.

Continuations from Generalized Stack Inspection – p.11/38



Eliminate Let

(define (f l)
(case l
(cons a l′) ⇒ ((λ (x)

((λ (l ′′) (cons x l
′′))

(f l
′)))

(g a))
(nil) ⇒ (nil)))

Continuations from Generalized Stack Inspection – p.12/38



Eliminate Let

(define (f l)
(case l
(cons a l′) ⇒ ((λ (x)

((λ (l ′′) (cons x l
′′))

(f l
′)))

(g a))
(nil) ⇒ (nil)))

� Now each fragment of the continuation is explicitly
represented as a lambda expression.

Continuations from Generalized Stack Inspection – p.12/38



Evaluation Context

((λ (l′′) (cons B0 l′′))
· · ·

((λ (l′′) (cons Bn−1 l′′))
((λ (x)

((λ (l′′) (cons x l′′))
(f Ln)))

[ ])) · · ·)

Continuations from Generalized Stack Inspection – p.13/38



Evaluation Context

((λ (l′′) (cons B0 l′′))
· · ·

((λ (l′′) (cons Bn−1 l′′))
((λ (x)

((λ (l′′) (cons x l′′))
(f Ln)))

[ ])) · · ·)
� What do the evaluation contexts look like?

Continuations from Generalized Stack Inspection – p.13/38



Evaluation Context

((λ (l ′′) (cons B0 l
′′))

· · ·
((λ (l ′′) (cons Bn-1 l

′′))
((λ (x)

((λ (l′′) (cons x l′′))
(f Ln)))

[ ])) · · ·)

Continuations from Generalized Stack Inspection – p.14/38



Evaluation Context

((λ (l ′′) (cons B0 l
′′))

· · ·
((λ (l ′′) (cons Bn-1 l

′′))
((λ (x)

((λ (l′′) (cons x l′′))
(f Ln)))

[ ])) · · ·)
� E = [ ] | ((λ · · ·) E)

Continuations from Generalized Stack Inspection – p.14/38



Evaluation Context

((λ (l ′′) (cons B0 l
′′))

· · ·
((λ (l ′′) (cons Bn-1 l

′′))
((λ (x)

((λ (l′′) (cons x l′′))
(f Ln)))

[ ])) · · ·)
� E = [ ] | ((λ · · ·) E)
� Evaluation contexts are just chains of lambda

applications.

Continuations from Generalized Stack Inspection – p.14/38



Continuation Marks and CMT

Continuations from Generalized Stack Inspection – p.15/38



Continuation Marks and CMT

� In the model langauge evaluation contexts are
completely determined as sequences of lambda
expressions.

Continuations from Generalized Stack Inspection – p.15/38



Continuation Marks Basics

Continuation marks allow you to store extra information in
the continuation of an expression and possibly retrieve it
later.

Continuations from Generalized Stack Inspection – p.16/38



Continuation Marks Basics

Continuation marks allow you to store extra information in
the continuation of an expression and possibly retrieve it
later.

� Values are embedded in the continuation using w-c-m

Continuations from Generalized Stack Inspection – p.16/38



Continuation Marks Basics

Continuation marks allow you to store extra information in
the continuation of an expression and possibly retrieve it
later.

� Values are embedded in the continuation using w-c-m

� All such values embedded in the current continuation
are recovered using c-c-m

Continuations from Generalized Stack Inspection – p.16/38



Continuation Marks Example

(define (f l)
(case l
(nil) ⇒ (nil)
(cons x l′) ⇒ (cons (g x) (f l′))))

Continuations from Generalized Stack Inspection – p.17/38



Continuation Marks Example

(define (f l)
(case l
(nil) ⇒ (begin

(display (c-c-m))
(nil))

(cons x l′) ⇒ (w-c-m x

(cons (g x) (f l′)))))

Continuations from Generalized Stack Inspection – p.18/38



Continuation Marks Example

(define (f l)
(case l
(nil) ⇒ (begin

(display (c-c-m))
(nil))

(cons x l′) ⇒ (w-c-m x

(cons (g x) (f l′)))))

(f (cons 0 (cons 1 (cons 2 (nil)))))

Continuations from Generalized Stack Inspection – p.18/38



Continuation Marks Example

(define (f l)
(case l
(nil) ⇒ (begin

(display (c-c-m))
(nil))

(cons x l′) ⇒ (w-c-m x

(cons (g x) (f l′)))))

(f (cons 0 (cons 1 (cons 2 (nil)))))

eval
−→

∗

(cons (g 0) (cons (g 1) (cons (g 2) (nil))))
Console Output: (list 0 1 2 3)

Continuations from Generalized Stack Inspection – p.18/38



Where the Marks Go

� Recall that evaluation contexts are just
appplications of lambdas

Continuations from Generalized Stack Inspection – p.19/38



Where the Marks Go

� Recall that evaluation contexts are just
appplications of lambdas

((λ (x0) · · ·)
((λ (x1) · · ·)
· · ·))

Continuations from Generalized Stack Inspection – p.19/38



Where the Marks Go

� Recall that evaluation contexts are just
appplications of lambdas

((λ (x0) · · ·)
((λ (x1) · · ·)
· · ·))

(w-c-m (λ (x0 ) · · · )
((λ (x0) · · ·)

(w-c-m (λ (x1 ) · · · )
((λ (x1) · · ·)
· · ·))))

Continuations from Generalized Stack Inspection – p.19/38



Where the Marks Go

� Recall that evaluation contexts are just
appplications of lambdas

((λ (x0) · · ·)
((λ (x1) · · ·)
· · ·))

(w-c-m (λ (x0 ) · · · )
((λ (x0) · · ·)

(w-c-m (λ (x1 ) · · · )
((λ (x1) · · ·)
· · ·))))

� E = [ ] | (w-c-m (λ · · ·) ((λ · · ·) E))

Continuations from Generalized Stack Inspection – p.19/38



Recovering the Marks

c-c-m can then be used to tease out the continuation.

Continuations from Generalized Stack Inspection – p.20/38



Recovering the Marks

c-c-m can then be used to tease out the continuation.

(w-c-m (λ (x0) · · ·)
((λ (x0) · · ·)
(w-c-m (λ (x1) · · ·)

((λ (x1) · · ·)
(λ (m)

(λ (v)
(abort (resume m v))))

(c-c-m))))))

Continuations from Generalized Stack Inspection – p.20/38



Recovering the Marks

c-c-m can then be used to tease out the continuation.

(w-c-m (λ (x0) · · ·)
((λ (x0) · · ·)
(w-c-m (λ (x1) · · ·)

((λ (x1) · · ·)
(λ (m)

(λ (v)
(abort (resume m v))))

(c-c-m))))))

eval
−→

∗

(λ (v)
(abort (resume (list (λ (x0) · · ·) (λ (x1) · · ·)) v)))

Continuations from Generalized Stack Inspection – p.20/38



Resume

We need a helper function to reconstitute the stack using
the results of a c-c-m

Continuations from Generalized Stack Inspection – p.21/38



Resume

We need a helper function to reconstitute the stack using
the results of a c-c-m

(define (resume l v)
(case l
(nil) ⇒ v
(cons f l′) ⇒ (f (w-c-m f (resume l′ v)))))

Continuations from Generalized Stack Inspection – p.21/38



Reconstitution Theorem

CMT [[Σ]]/(resume X (CMT [[E ′]]) CMT [[v]])

→+

TL CMT [[Σ]]/CMT [[E ′]][CMT [[v]]]

Continuations from Generalized Stack Inspection – p.22/38



Reconstitution Theorem

CMT [[Σ]]/(resume X (CMT [[E ′]]) CMT [[v]])

→+

TL CMT [[Σ]]/CMT [[E ′]][CMT [[v]]]

� resume faithfully reconstitutes the stack

Continuations from Generalized Stack Inspection – p.22/38



Putting It All Together

((λ (x0) · · ·)
· · ·

((λ (xn) · · ·) [ ]))

Continuations from Generalized Stack Inspection – p.23/38



Putting It All Together

((λ (x0) · · ·)
· · ·

((λ (xn) · · ·) [ ]))

CMT
−→
(λ (v)

(abort (resume (list (λ (x0) · · ·) · · · (λ (xn) · · ·)) v)))

Continuations from Generalized Stack Inspection – p.23/38



Putting It All Together

((λ (x0) · · ·)
· · ·

((λ (xn) · · ·) [ ]))

CMT
−→
(λ (v)

(abort (resume (list (λ (x0) · · ·) · · · (λ (xn) · · ·)) v)))

((λ (v)
(abort (resume (list (λ (x0) · · ·) · · · (λ (xn) · · ·)) v)))

7)

Continuations from Generalized Stack Inspection – p.23/38



Putting It All Together

((λ (x0) · · ·)
· · ·

((λ (xn) · · ·) [ ]))

CMT
−→
(λ (v)

(abort (resume (list (λ (x0) · · ·) · · · (λ (xn) · · ·)) v)))

((λ (v)
(abort (resume (list (λ (x0) · · ·) · · · (λ (xn) · · ·)) v)))

7)

eval
−→

∗

((λ (x0) · · ·)
· · ·

((λ (xn) · · ·) [7]))
Continuations from Generalized Stack Inspection – p.23/38



Evaluation Theorem

CMT [[evalSL(p)]] = evalTL(CMT [[p]])

Continuations from Generalized Stack Inspection – p.24/38



Evaluation Theorem

CMT [[evalSL(p)]] = evalTL(CMT [[p]])

E [e]
eval
−→ E ′[e′]

| |

CMT CMT

↓ ↓

[[E [e]]]
eval
−→

+

[[E ′[e′]]]

Continuations from Generalized Stack Inspection – p.24/38



Defunctionalization

Continuations from Generalized Stack Inspection – p.25/38



Defunctionalization

� Still need to make continuations serializable.

Continuations from Generalized Stack Inspection – p.25/38



Defunctionalization

� Still need to make continuations serializable.
� Continuation values are now just lists of lambdas.

Continuations from Generalized Stack Inspection – p.25/38



Defunctionalization

� Still need to make continuations serializable.
� Continuation values are now just lists of lambdas.
� Use standard defunctionalization to replace lambda

constructed values with serializable data structures.

Continuations from Generalized Stack Inspection – p.25/38



Pragmatics

Recall that we wanted to avoid whole-program
transformation

Continuations from Generalized Stack Inspection – p.26/38



Pragmatics

Recall that we wanted to avoid whole-program
transformation

� CMT does not change the calling signature of
functions, so it can be applied locally.

Continuations from Generalized Stack Inspection – p.26/38



Pragmatics

Recall that we wanted to avoid whole-program
transformation

� CMT does not change the calling signature of
functions, so it can be applied locally.

� The translated code will work fine in most contexts.

Continuations from Generalized Stack Inspection – p.26/38



Pragmatics

Recall that we wanted to avoid whole-program
transformation

� CMT does not change the calling signature of
functions, so it can be applied locally.

� The translated code will work fine in most contexts.
� There’s a problem when an untranslated function calls

a translated function that then attempts to capture a
continuation.

Continuations from Generalized Stack Inspection – p.26/38



Problem Details

Continuations from Generalized Stack Inspection – p.27/38



Problem Details

� In our model language stack frames are lambda
applications.

Continuations from Generalized Stack Inspection – p.27/38



Problem Details

� In our model language stack frames are lambda
applications.

� Translated frames are explicitly marked with their
lambdas, while untranslated frames are not marked.

Continuations from Generalized Stack Inspection – p.27/38



Problem Details

� In our model language stack frames are lambda
applications.

� Translated frames are explicitly marked with their
lambdas, while untranslated frames are not marked.

� If a continuation capture is attempted while the stack
contains unmarked frames, then the resulting
continuation value will have bits missing.

Continuations from Generalized Stack Inspection – p.27/38



Problem Details

� In our model language stack frames are lambda
applications.

� Translated frames are explicitly marked with their
lambdas, while untranslated frames are not marked.

� If a continuation capture is attempted while the stack
contains unmarked frames, then the resulting
continuation value will have bits missing.

� This will cause undefined behavior.

Continuations from Generalized Stack Inspection – p.27/38



Solution Strategy

Use continuation marks to delimit untranslated
portions of the stack.

Continuations from Generalized Stack Inspection – p.28/38



Solution Strategy

Use continuation marks to delimit untranslated
portions of the stack.

� Every function application is given a special “safety”
mark.

Continuations from Generalized Stack Inspection – p.28/38



Solution Strategy

Use continuation marks to delimit untranslated
portions of the stack.

� Every function application is given a special “safety”
mark.

� Whenever a continuation is captured inspect the list of
safety marks.

Continuations from Generalized Stack Inspection – p.28/38



Solution Strategy

Use continuation marks to delimit untranslated
portions of the stack.

� Every function application is given a special “safety”
mark.

� Whenever a continuation is captured inspect the list of
safety marks.

� Undefined behavior is avoided by signalling an error.

Continuations from Generalized Stack Inspection – p.28/38



Solution Strategy

Use continuation marks to delimit untranslated
portions of the stack.

� Every function application is given a special “safety”
mark.

� Whenever a continuation is captured inspect the list of
safety marks.

� Undefined behavior is avoided by signalling an error.
� Need to take a closer look at Continuation marks.

Continuations from Generalized Stack Inspection – p.28/38



Continuation Marks and Tail-Calls

A Continuation Mark that is in Tail Position with
respect to an enclosing Continuation Mark will
overwrite the value of the enclosing Continuation
Mark.

Continuations from Generalized Stack Inspection – p.29/38



Continuation Marks and Tail-Calls

A Continuation Mark that is in Tail Position with
respect to an enclosing Continuation Mark will
overwrite the value of the enclosing Continuation
Mark.

� (w-c-m 7 (w-c-m 8 (f · · ·)))

Continuations from Generalized Stack Inspection – p.29/38



Continuation Marks and Tail-Calls

A Continuation Mark that is in Tail Position with
respect to an enclosing Continuation Mark will
overwrite the value of the enclosing Continuation
Mark.

� (w-c-m 7 (w-c-m 8 (f · · ·)))
� (w-c-m 8 (f · · ·)) is in Tail Position w.r.t. (w-c-m 7 · · ·)

Continuations from Generalized Stack Inspection – p.29/38



Continuation Marks and Tail-Calls

A Continuation Mark that is in Tail Position with
respect to an enclosing Continuation Mark will
overwrite the value of the enclosing Continuation
Mark.

� (w-c-m 7 (w-c-m 8 (f · · ·)))
� (w-c-m 8 (f · · ·)) is in Tail Position w.r.t. (w-c-m 7 · · ·)
� (w-c-m 7 · · ·) encloses (w-c-m 8 (f · · ·))

Continuations from Generalized Stack Inspection – p.29/38



Continuation Marks and Tail-Calls

A Continuation Mark that is in Tail Position with
respect to an enclosing Continuation Mark will
overwrite the value of the enclosing Continuation
Mark.

� (w-c-m 7 (w-c-m 8 (f · · ·)))
� (w-c-m 8 (f · · ·)) is in Tail Position w.r.t. (w-c-m 7 · · ·)
� (w-c-m 7 · · ·) encloses (w-c-m 8 (f · · ·))
� Simplifies to: (w-c-m 8 (f · · ·))

Continuations from Generalized Stack Inspection – p.29/38



Example with Tail Calls

(define (f-cps k l)
(case l
(nil) ⇒ (k (nil))
(cons x l′) ⇒ (f-cps (λ (l′′) (g (λ (x′) (k (cons x′ l′′)) x)))

l′)))

Continuations from Generalized Stack Inspection – p.30/38



Example with Tail Calls

(define (f-cps k l)
(case l
(nil) ⇒ (begin

(display (c-c-m))
(k (nil)))

(cons x l′) ⇒ (w-c-m x

(f-cps (λ (l′′) (g (λ (x′) (k (cons x′ l′′))) x))
l′))))

Continuations from Generalized Stack Inspection – p.31/38



Example with Tail Calls

(define (f-cps k l)
(case l
(nil) ⇒ (begin

(display (c-c-m))
(k (nil)))

(cons x l′) ⇒ (w-c-m x

(f-cps (λ (l′′) (g (λ (x′) (k (cons x′ l′′))) x))
l′))))

(f (λ (x) x) (cons 0 (cons 1 (cons 2 (nil)))))

Continuations from Generalized Stack Inspection – p.31/38



Example with Tail Calls

(define (f-cps k l)
(case l
(nil) ⇒ (begin

(display (c-c-m))
(k (nil)))

(cons x l′) ⇒ (w-c-m x

(f-cps (λ (l′′) (g (λ (x′) (k (cons x′ l′′))) x))
l′))))

(f (λ (x) x) (cons 0 (cons 1 (cons 2 (nil)))))

eval
−→

∗

(cons (g 0) (cons (g 1) (cons (g 2) (nil))))
Console Output: (list 3)

Continuations from Generalized Stack Inspection – p.31/38



Continuation Marks – Extended Interface

The interface for Continuation Marks can be extended to
allow for multiple disjoint sets of Continuation Marks.

Continuations from Generalized Stack Inspection – p.32/38



Continuation Marks – Extended Interface

The interface for Continuation Marks can be extended to
allow for multiple disjoint sets of Continuation Marks.

� w-c-m accepts an additional value that acts as a key
identifying to which set the mark belongs.

Continuations from Generalized Stack Inspection – p.32/38



Continuation Marks – Extended Interface

The interface for Continuation Marks can be extended to
allow for multiple disjoint sets of Continuation Marks.

� w-c-m accepts an additional value that acts as a key
identifying to which set the mark belongs.

� c-c-m accepts a key argument identifying which set of
marks to recover.

Continuations from Generalized Stack Inspection – p.32/38



Extended Interface Example

(w-c-m “Fred” 0
(f0 (w-c-m “Barney” 1

(f1 (w-c-m “Fred” 2
(f2 (w-c-m “Barney” 3

(begin
(printf “Fred: ˜a˜n” (c-c-m “Fred”))
(printf “Barney: ˜a˜n” (c-c-m “Barney”))
19))))))))

Continuations from Generalized Stack Inspection – p.33/38



Extended Interface Example

(w-c-m “Fred” 0
(f0 (w-c-m “Barney” 1

(f1 (w-c-m “Fred” 2
(f2 (w-c-m “Barney” 3

(begin
(printf “Fred: ˜a˜n” (c-c-m “Fred”))
(printf “Barney: ˜a˜n” (c-c-m “Barney”))
19))))))))

eval
−→

∗

(f0 (f1 (f2 19)))
Console Output:

Fred: (list 0 2)
Barney: (list 1 3)

Continuations from Generalized Stack Inspection – p.33/38



Example – map

(define (map f l)
(case l
(cons x l′) ⇒ (cons (f x) (map f l′))
(nil) ⇒ (nil)))

Continuations from Generalized Stack Inspection – p.34/38



Example – map

(define (map f l)
(case l
(cons x l′) ⇒ (cons (f x) (map f l′))
(nil) ⇒ (nil)))

· · · (map f l) · · ·

Continuations from Generalized Stack Inspection – p.34/38



Example – map

(define (map f l)
(case l
(cons x l′) ⇒ (cons (f x) (map f l′))
(nil) ⇒ (nil)))

· · · (map f l) · · ·

· · · (w-c-m “safe” false (map f l)) · · ·

Continuations from Generalized Stack Inspection – p.34/38



Example – map

(define (map f l)
(case l
(cons x l′) ⇒ (cons (f x) (map f l′))
(nil) ⇒ (nil)))

· · · (map f l) · · ·

· · · (w-c-m “safe” false (map f l)) · · ·

eval
−→

∗

· · · (w-c-m “safe” false (cons (f x) · · ·)) · · ·

Continuations from Generalized Stack Inspection – p.34/38



Example – safe-map

(define (safe-map f l)
(w-c-m “safe” true
· · ·))

Continuations from Generalized Stack Inspection – p.35/38



Example – safe-map

(define (safe-map f l)
(w-c-m “safe” true
· · ·))

· · · (safe-map f l) · · ·

Continuations from Generalized Stack Inspection – p.35/38



Example – safe-map

(define (safe-map f l)
(w-c-m “safe” true
· · ·))

· · · (safe-map f l) · · ·

· · · (w-c-m “safe” false (safe-map f l)) · · ·

Continuations from Generalized Stack Inspection – p.35/38



Example – safe-map

(define (safe-map f l)
(w-c-m “safe” true
· · ·))

· · · (safe-map f l) · · ·

· · · (w-c-m “safe” false (safe-map f l)) · · ·

eval
−→

∗

· · · (w-c-m “safe” false (w-c-m “safe” true · · ·)) · · ·

Continuations from Generalized Stack Inspection – p.35/38



Example – safe-map

(define (safe-map f l)
(w-c-m “safe” true
· · ·))

· · · (safe-map f l) · · ·

· · · (w-c-m “safe” false (safe-map f l)) · · ·

eval
−→

∗

· · · (w-c-m “safe” false (w-c-m “safe” true · · ·)) · · ·

eval
−→

∗

· · · (w-c-m “safe” true · · ·) · · ·

Continuations from Generalized Stack Inspection – p.35/38



Partial Solution

Continuation Marks allow us to detect when a
continuation capture could lead to undefined behavior
and instead signal an error.

Continuations from Generalized Stack Inspection – p.36/38



Partial Solution

Continuation Marks allow us to detect when a
continuation capture could lead to undefined behavior
and instead signal an error.

� Translation can be applied locally.

Continuations from Generalized Stack Inspection – p.36/38



Partial Solution

Continuation Marks allow us to detect when a
continuation capture could lead to undefined behavior
and instead signal an error.

� Translation can be applied locally.
� Special cases will lead lead to a run-time error.

Continuations from Generalized Stack Inspection – p.36/38



Partial Solution

Continuation Marks allow us to detect when a
continuation capture could lead to undefined behavior
and instead signal an error.

� Translation can be applied locally.
� Special cases will lead lead to a run-time error.
� Some higher-order functions will have to be translated.

Continuations from Generalized Stack Inspection – p.36/38



Partial Solution

Continuation Marks allow us to detect when a
continuation capture could lead to undefined behavior
and instead signal an error.

� Translation can be applied locally.
� Special cases will lead lead to a run-time error.
� Some higher-order functions will have to be translated.

Continuations from Generalized Stack Inspection – p.36/38



Exceptions as Continuation Marks

Our translation offers an alternative to CPS for
implementing first-class continuations on traditional
VMs.

Continuations from Generalized Stack Inspection – p.37/38



Exceptions as Continuation Marks

Our translation offers an alternative to CPS for
implementing first-class continuations on traditional
VMs.

� Conventional VMs don’t implement continuation marks
but do implement exceptions.

Continuations from Generalized Stack Inspection – p.37/38



Exceptions as Continuation Marks

Our translation offers an alternative to CPS for
implementing first-class continuations on traditional
VMs.

� Conventional VMs don’t implement continuation marks
but do implement exceptions.

� We show that exceptions can simulate continuation
marks.

Continuations from Generalized Stack Inspection – p.37/38



Exceptions as Continuation Marks

Our translation offers an alternative to CPS for
implementing first-class continuations on traditional
VMs.

� Conventional VMs don’t implement continuation marks
but do implement exceptions.

� We show that exceptions can simulate continuation
marks.

� (w-c-m) corresponds to intalling an exception handler.

Continuations from Generalized Stack Inspection – p.37/38



Exceptions as Continuation Marks

Our translation offers an alternative to CPS for
implementing first-class continuations on traditional
VMs.

� Conventional VMs don’t implement continuation marks
but do implement exceptions.

� We show that exceptions can simulate continuation
marks.

� (w-c-m) corresponds to intalling an exception handler.
� (c-c-m) corresponds to throwing an exception.

Continuations from Generalized Stack Inspection – p.37/38



Exceptions as Continuation Marks

· · · (c-c-m) · · ·

Continuations from Generalized Stack Inspection – p.38/38



Exceptions as Continuation Marks

· · · (c-c-m) · · ·

7→
· · · (w-c-m “safe” false (w-c-m “safe” true · · ·)) · · ·

Continuations from Generalized Stack Inspection – p.38/38



Exceptions as Continuation Marks

· · · (c-c-m) · · ·

7→
· · · (w-c-m “safe” false (w-c-m “safe” true · · ·)) · · ·

(w-c-m (λ · · ·)
((λ · · ·) · · ·))

Continuations from Generalized Stack Inspection – p.38/38



Exceptions as Continuation Marks

· · · (c-c-m) · · ·

7→
· · · (w-c-m “safe” false (w-c-m “safe” true · · ·)) · · ·

(w-c-m (λ · · ·)
((λ · · ·) · · ·))

7→
(try ((lambda · · ·) · · ·) (catch exn (throw (cons (lambda

Continuations from Generalized Stack Inspection – p.38/38



Exceptions as Continuation Marks

· · · (c-c-m) · · ·

7→
· · · (w-c-m “safe” false (w-c-m “safe” true · · ·)) · · ·

(w-c-m (λ · · ·)
((λ · · ·) · · ·))

7→
(try ((lambda · · ·) · · ·) (catch exn (throw (cons (lambda

Continuations from Generalized Stack Inspection – p.38/38


	Motivation: Continuations, VMs, and the Web
	Continuations and the Web
	Two Approaches to Servlets
	Native Continuations
	Automatic Restructuring of Web Programs
	Implementing Scheme on Standard VMs
	ZZZZschemecodeintext cn {call/cc}endZZZZschemecodeintext {} -- CPS Approach
	ZZZZschemecodeintext cn {call/cc}endZZZZschemecodeintext {} -- CMT Approach
	Let's Translate
	A-Normalize
	Eliminate Let
	Evaluation Context
	Evaluation Context
	Continuation Marks and CMT
	Continuation Marks Basics
	Continuation Marks Example
	Continuation Marks Example
	Where the Marks Go
	Recovering the Marks
	Resume
	Reconstitution Theorem
	Putting It All Together
	Evaluation Theorem
	Defunctionalization
	Pragmatics
	Problem Details
	Solution Strategy
	Continuation Marks and Tail-Calls
	Example with Tail Calls
	Example with Tail Calls
	Continuation Marks -- Extended Interface
	Extended Interface Example
	Example -- ZZZZschemecodeintext va {map}endZZZZschemecodeintext {}
	Example -- ZZZZschemecodeintext va {safe-map}endZZZZschemecodeintext {}
	Partial Solution
	Exceptions as Continuation Marks
	Exceptions as Continuation Marks

