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ABSTRACT
By distinguishing between events and aspects, it is possi-
ble to separate the problem of identifying when an aspect
should be applied, from what it must do. Observers (as-
pects that do not affect the state of the base system) are
already part of aspect-oriented programming and language
support is emerging for events that gather information and
announce occurrence. The goal of compositional verification
of events and observers is to prove that they are correct so
that their guarantees may be used by other events or as-
pects. Moreover, a compositional verification model allows
applying formal verification techniques in smaller models,
and also building a library of events, in which for any base
system that satisfies certain assumptions, the event detec-
tion will satisfy its guarantees. In this work compositional
verification of events and observers will be defined to aid in
the design of a framework that allows users to verify events,
providing as well flexibility in the input language of the spec-
ification.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions; D.2.4 [Software Engineering]: Software/Program
Verification—Correctness proofs, Model checking

General Terms
Languages, Verification

Keywords
Events, Observer Aspects, Verification, Composition

1. INTRODUCTION
The goals of this work are to (1) precisely identify the

components involved in the verification of events, (2) pro-
vide a methodological way to specify and verify events com-
positionally and (3) outline a framework design in which the
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input to the verification process that the user must provide
is clearly defined, as are the steps performed automatically
to verify events. The full version of this summary is available
from the authors.

Aspect oriented programming (AOP) [13] allows express-
ing crosscutting concerns to the application in a modular
way. AspectJ [12] defines a set of possible joinpoints - states
where an aspect should be applied. For each aspect, point-
cuts define where the response should be applied, and ad-

vices define what must be done.
However, AspectJ does not provide an optimal notation

for a variety of problems. Most pointcuts in AspectJ can
only see the present state in the execution and the cur-
rent call stack. This does not give enough flexibility to be
able to aggregate the history of events that have occurred.
The second problem is the difficulty to share information
between events: pointcuts only expose information on the
target class, the arguments and the current aspect being ex-
ecuted. The third problem is that pointcuts are defined by
means of events in the code, and sometimes we may be inter-
ested in expressing matching joinpoints in a more abstract
way, for instance by defining events that occur as a result of
the composition of other events.

[1, 17, 4] deal with the first problem by using a restriction
of the language of aspects to regular expressions, or treating
sequences of events but still the composition of lower level
events and independence between the joinpoint and the re-
sponse are not treated.

Douence et al. [6] present a solution for these problems
by allowing to share variables between crosscuts (pointcuts),
preserving the history of execution and defining composition
between aspects. However the crosscuts are still tightly re-
lated to the inserts (advices), and this restricts reusability.

The separation of events has been presented already in the
event-based approaches of [8, 14], independently of aspects.

[15, 11, 5] have identified the need of defining event as-
pects, spectators or observers that gather information but
do not change the base system, although those aspects are
allowed to print values.

Bockisch et al. [3] introduce a solution to these problems
by syntactically distinguishing between events and aspects.
Event declarations may accumulate information and do not
affect the underlying system in any way, including printing
values. They indicate when a certain concern should be
woven and provide collected information of the system to be
used by other event declarations or aspects.

Thus, the idea of defining aspects or events that collect
information and are triggered when the collected informa-



tion satisfies a certain property is natural in systems. We
will focus here on showing how to verify the correctness of
event declarations, that use other events in their declara-
tion. These definitions are also useful for existing systems
already defined using observers and spectators even though
the notation presented for events in [3] will be used here.

Events and observer aspects may seem trivial due to their
spectative behavior on the base system. However, events
incorporate the logic of when they must be triggered, and
what information is exposed. They (and observer aspects)
collect information from different possible sequences in the
base system. This information may be collected from actions
on the base system, and even subjected to some internal pro-
cessing. Given that in the extension presented in [3] general
aspects now respond to states in which events are detected,
for later aspect verification it will be essential to assume
that events are detected in the correct states and that they
expose the expected information.

In this work we will focus on model checking techniques.
However, present methods are “flat” in that they relate to
aspects that directly are woven to a base system without
event dependencies defined hierarchically. Here we empha-
size the incorporation of assumed properties on used events
in the verification of an event. Moreover, standard use of
temporal logic assertions is problematic for event specifica-
tions. Thus, the framework presented gives enough liberty
to choose among different modeling languages for the specifi-
cation: regular expressions, Kripke models, Moore machines
or temporal logic formulas.

The verification of events will be presented using the assume-
guarantee model, which allows building a reference library of
available events already verified. Hence, for any base system
and set of events which satisfy the assumptions of needed
events from the library, the library events may be included
and their guarantees will hold without further verification.

1.1 Outline
This work is organized as follows: Section 2 presents back-

ground on models and simulations. Section 3 presents the
definition of events and the necessary assumptions. In sec-
tion 4 the verification steps are defined. Lastly, in Section 5
the conclusions are presented.

2. BACKGROUND
To be able to give a formal model of the specification

and apply formal verification, the definitions of structures,
homomorphism, preorder in structures, and Moore Machines
presented in [10] will be used. The concepts of LTL, fairness
and reductions presented in [7] will be used as well.

2.1 Kripke model for a Moore machine
In [10], a procedure was presented to obtain the corre-

sponding Kripke structure of a given Moore machine. This
structure contains the Cartesian product of each state with
all the transition labels that may lead to another state. In
our case we use a different construction, in which each state
contains the transition labels that caused arriving to it. The
formal definition is presented in the full version of this sum-
mary.

2.2 Model restriction
For a model M = 〈S, S0, R, L,F〉 given by a Kripke model

over the set of atomic propositions AP , the operator M ↾

AP ′ represents the restriction of the model to the atomic
propositions in AP ′. That is, for all s ∈ S, L′ (s) = L (s) ∩
AP ′.

3. EVENTS
Events collect information on the base system, are trig-

gered when an interesting situation to be detected occurs,
and may expose certain information.

3.1 Assumptions
The following is assumed:

• Event invocation and execution do not affect any vari-
able external to the event declaration, and they also
do not affect the control flow (they must return the
execution flow to the base system at the point they
were begun).

• Event internal fields are only updated within the event
declaration execution.

• There are no cycles in the event dependencies, i.e., an
event cannot depend on itself being triggered in the
correct places or its own exposed information being
correct.

• Fairness restrictions must satisfy that it is always pos-
sible to get to a returning state for each event evalua-
tion.

The first two properties may be checked by applying static
analysis tools, adapting the tools presented in [2, 5, 16, 18]
which work for identifying spectative or observer aspects.
The dependency between events define an Event Depen-
dency Graph [3], and cycle dependencies can be checked by
analyzing this graph. Event models should guarantee that
the only fair paths are those that eventually reach the end
of execution.

From now on, the previously mentioned properties are as-
sumed to hold.

3.2 Event Model
Each event contains a set of internal atomic propositions

corresponding to the values of the internal fields, a set of ex-
ternal atomic propositions representing the parameters ob-
tained from the lower level events, the initial values for the
internal atomic propositions, and which basic units form the
event.

Each basic unit u is a pair of a condition (consisting of
other events having been triggered, pointcuts or predicates
over the atomic propositions) and an event response that
may only change the internal atomic propositions, or may
trigger the event.

For the variables, fields, and parameters exposed, stan-
dard encoding and abstracting mechanisms are used, for ex-
ample, range of values, boolean variables, etc.

We will use a high-level-syntax event example. There are
well known translations from this language to the model
form. The fragment of code presented in Figure 1 serves as
an example of an event defined in terms of another event.
There are three event declarations: (1) commit, (2) TwoCommits

is an event detected every two times commit is applied,
and (3) SixCommits is an event detected every six times
commit is applied (but is defined indirectly using TwoCommits).



event commit ( ) : c a l l (∗ ∗ . commit ( . . ) ) ;
even t TwoCommits ( )

i n t coun te r =0;
when ( ) : commit ( )

coun te r++;
i f ( coun te r mod 2 == 0)

t r i g g e r ( ) ;
coun te r = 0 ;

event SixCommits ( )
i n t coun te r =0;
when ( ) : TwoCommits ( )

coun te r++;
i f ( coun te r mod 3 == 0)

t r i g g e r ( ) ;
coun te r =0;

Figure 1: SixCommits

4. VERIFICATION PROCESS

4.1 Event evaluation Semantics
To be able to introduce the event evaluation semantics,

the operator ⊛ is formally defined in the full version of this
article. This operator represents the evaluation of the events
in a set of events E in a base system or base system assump-
tion B.

In this semantics, all the events are evaluated immediately,
adding which events are detected to the atomic propositions
of each possible state in the base system.

The base system regards events as being evaluated all at
once, and in parallel due to their spectative nature. This
differs from the weaving of aspects into a base system as
presented in [9], where every state in the execution of the as-
pect is added to the woven model. Aspects are not instantly
evaluated as their execution is not necessarily spectative and
the state of the base system may change.

Note that in Figure 1 the basic units in the events take
several steps to execute. However, in the resulting semantics
event execution may be seen as immediate relative to the
base system because of the locality of the fields, that no
event affects the internal propositions of other events, and
that there are no dependencies cycles.

Events and observers detect interesting situations in the
base system, or collect information for certain paths of exe-
cution without affecting the state of the base system. This is
one of the more useful advantages in restricting verification
to events and observers rather than general aspects. Even
though the size of the model grows due to the possible in-
ternal states of the events, the execution of all the events
involved does not have to be represented at once, but only
the resulting internal states and detected events.

From now on, B ⊛E represents the base system with the
detection of all events in E. U will also serve to denote a
set of event declarations.

4.2 Specification

4.2.1 General idea
To prove a guarantee about an eventE, E needs to assume

the correctness of the guarantees of events it uses (and the
same is true for a general aspect A).

The properties that an event must be proved to satisfy
may be categorized as:

1. The event is triggered in the correct places. This re-

quires defining exactly which sequence of situations
and contexts in the base system and previously verified
events should cause the current event to be triggered.
The specification is in terms of event detections, ex-
posed parameters and may as well include auxiliary
variables.

2. The parameters exposed by the event satisfy the in-
tended relations with the history of execution.

4.2.2 Specification definition
An event’s specification, 〈Ass,Guar〉 - representing the

assume and the guarantee - may be given in different spec-
ification languages. If the specification is given as a regular
expression, then the equivalent automaton is obtained and
it can be understood as a Moore Machine. If any of them is
given as a Moore machine, then the equivalent Kripke model
is built. If any of them is given as a CTL or LTL formula,
then its tableau is built.

In particular the specification of TwoCommits may be
expressed as 〈Ass,Guar〉 where Ass ≡ ¬commit (commit is
false in the initial state) and Guar is given in Figure 2. This
guarantee represents that every two occurrences of commit,
twocommits hold.

The guarantee of the event TwoCommits should be the
assumption of SixCommits. Then, SixCommits’ specifica-
tion is given by 〈GuarTwoCommits, GuarSixCommits〉.

The guarantee of SixCommits can be expressed as a Moore
machine, as in Figure 4 or as its equivalent Kripke model
presented in Figure 5.

When the event is intended to occur dependent on the
occurrence of other events, either after a sequence of other
events or the lack of events, the preferred specification is as a
regular expression of events or in state machines, where both
the specification and the event are given in that form. As-
pect specifications usually refer to what properties each state
must satisfy. Events, on the other hand, do not modify the
state of the base system and are specified by means of what
sequences of triggered event lead to them being detected,
and what properties their exposed parameters must satisfy.
Hence, aspects usually satisfy properties given in temporal
logic, over the atomic propositions that represent the state,
and events preserve the state so they refer to sequences of
states instead. For every possible sequence it must be de-
scribed whether it leads (or not) to the event to be detected
and which information is to be exposed. Temporal logic
expressions can be used to specify events, but become awk-
ward and unreadable very quickly when sequences of lower
level events must be expressed. Therefore we prefer regular
expressions or state machines.

Specifying a property that the parameters satisfy when
the event is detected may be defined by means of any of the
languages presented for specification and a similar verifica-
tion process can be applied.

4.3 Verification
Event verification consists in checking whether: given the

assumption Ass of E on the base system and used event
detectors, when detecting the event E, the guarantee Guar

is satisfied (expressing both when E is detected and what
must hold for parameters it then exposes).

In more formal notation, the goal in event verification is
to prove that B ⊛ E � Guar. This is, the base system
together with the event detection satisfies its specification.



Figure 2: Moore ma-

chine: GuarTwoCommits

Figure 3: Kripke

model: GuarTwoCommits

Figure 4: Moore machine: GuarSixCommits

However, in order to obtain a modular verification of events,
the assume guarantee model is used and the specification
will be given by 〈Ass,Guar〉. The goal will be to prove that
if Ass is the assumption about the base system and used
event detectors, and Ass ⊛ E � Guar, then for any base
system B and set of used event declarations U such that
B⊛U � Ass, it can be inferred that B⊛U ⊛E � Guar, this
is, the base system with all the event detectors incorporated
satisfies its guarantee. At this step, verification of events is
presented for a base system which has no aspects that may
affect the event woven into it. Verification of events together
with aspects woven will be analyzed in future work.

In particular, for the correctness in the detection of the
event, if there exists an assumption AssB on the base system
such that:

B � AssB

AssB ⊛ U ↾ APAss ≡ Ass (1)

Ass⊛E ↾ APGuar ≡ Guar (2)

Then:

AssB ⊛ U ⊛ E ↾ APGuar ≡ Guar

B ⊛ U ⊛E � Guar

The previous inference expresses that:

• Given a base system that satisfies a certain assumption
AssB

• Given that the composition of this assumption with
the set of used event detectors is equivalent to the as-
sumption of the event, and

Figure 5: Kripke model: GuarSixCommits

Figure 6: SixCommits

Figure 7: GuarTwoCommits ⊛ SixCommits

• Given that an event E is proven to be correct with
respect to its specification

Then, the composition of the base system, used event detec-
tors and E satisfies the guarantee Guar.

In the previous inference, (1) may be proven using the
assume-guarantee model as well. In (1) and (2), proving the
bisimulation guarantees that there exist paths in the model
on the left side of the equation that behave as presented in
the guarantee. Ass, Guar and E must be given by the user
so as to verify that E satisfies its specification 〈Ass,Guar〉.

Considering the example, a base system B will be com-
posed with TwoCommits and SixCommits. The first step
is to prove TwoCommits is correct. When ¬commit is ini-
tially true, the tableau of the assumption together with the
model of the code of TwoCommits can be proven to satisfy
Figure 3. Turning to SixCommits, when its assumption
holds, the model of the code of SixCommits can be proven
to satisfy its guarantee as presented below.

The event SixCommits - with AP0 = {count = 0} con-
tains only one basic unit modeled in Figure 6. The event is
evaluated for each occurrence of twocommits. Every three
occurrences of twocommits, sixcommits is triggered.

The event evaluation of SixCommits is given by:
S = {u0, u1, u2, u3} × 2APSC where {u0, u1, u2, u3} are

the states from Figure 3 and APSC = {count = 0, count =
1, count = 2, ret, sixcommits}. S0 = {(u0, count = 0)}

Considering the definition of the relation between the states
and the event, the model in Figure 7 is obtained.

Restricting the model of GuarTwoCommits ⊛SixCommits

to the atomic propositions of the specification, it is exactly
the same model as given by the specification.

Therefore, effectively there is a homomorphism such that
GuarTwoCommits ⊛ SixCommits ≡ GuarSixCommits.

The previous procedure shows the correctness of SixCommits

with respect to its specification. Now, for any base system B

that satisfies ¬commit, B⊛TwoCommits is correct. More-
over, for any implementation of TwoCommits that satisfies
the guarantee presented in Figure 3, incorporating the eval-
uation of SixCommits will satisfy GuarSixCommits. Con-
sequently, it can be inferred that for any base system B



such that commit does not occur in the initial state, and
for the models of the code presented for TwoCommits and
SixCommits:

B ⊛ TwoCommits⊛ SixCommits � GuarSixCommits

Note how the guarantee of a simpler event is used as an
assumption of one that uses it, and is incorporated into the
verification.

The previous verification may include information on what
values are exposed by the parameters. For the correctness
of the exposed parameters a simulation is enough to prove
the correctness and conclude that B ⊛ U ⊛E � Guar.

The process of finding a homomorphism for � can be done
automatically by the algorithm presented in [10]. There are
also automatic methods for obtaining the structure equiva-
lent to a Moore machine or the tableau of a formula. The
only things remaining to the user to provide are the specifi-
cation and the model of the event expected to be verified.

5. CONCLUSIONS
Given the need to separate and abstract when an aspect

is applied from what aspects do, events were incorporated
in [3] aiming to identify when things should happen, and
being able to collect information, or be detected when par-
ticular sequences of other events occurrences. Moreover, ob-
servers and spectator aspects [5, 11] are part of current pro-
gramming practices in aspect-oriented programming. Due
to their spectative nature, events and observers may seem
trivial to be verified for correctness. However, other events
and aspects may use the information and detection of the
event, hence events must be verified to be correct when they
are triggered, and the information exposed must satisfy re-
quirements that other entities depend on.

Events may be thought of as spectative aspects with the
additional triggering action, the use of other events as con-
ditions, and restricted not to have output. This guarantees
non-interference between the events. No event can affect an-
other event - except by triggering itself, and none of them
may modify the state in the base system.

In this work a modular verification method for events is
introduced where the user is requested to present the as-
sumptions, the expected guarantees and the event itself to
be verified. Without additional intervention of the user the
property is verified relative to the specifications of the used
events. The use of the guarantees of events as assumptions
for other events is shown as well. For all the steps pre-
sented there are existing tools that perform the necessary
algorithms.

The users may follow the procedures presented in the arti-
cle to define their own specifications or use their own meth-
ods, using for example regular expressions or state machines.
Expressing sequences of events in a temporal logic formula
gets hard to read very easily.

In the full version of this summary (as noted, available
from the authors), a fuller semantic notation is presented,
as well as an additional example with Guar on the param-
eters, and detection involving the absence of other events.
In future work, the influence of events on aspects will be
analyzed, to give a complete hierarchical and compositional
formal verification algorithm for systems that include both
events and aspects. In this framework, as opposed to [9], the
assumptions about other events can be incorporated natu-
rally.
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