
Making Aspects Natural: Events and Composition

Christoph Bockisch, Somayeh Malakuti,
Mehmet Akşit

Software Engineering group, University of
Twente, 7500 AE Enschede, The Netherlands

{c.m.bockisch,malakutis,m.aksit}
@cs.utwente.nl

Shmuel Katz
Department of Computer Science, The Technion

Haifa 32000
Israel

katz@cs.technion.ac.il

ABSTRACT
Language extensions are proposed to make aspects more nat-
ural for programmers. The extensions involve two main ele-
ments: (1) Completely separating the identification of events
and locally accumulating information about them from any
possible response to the events, and (2) composing both
events and aspects into hierarchies that loosen the connec-
tion to code-level methods and field names. The combina-
tion of these extensions are shown (in preliminary exper-
iments) to increase modularity, and facilitate using termi-
nology natural for each concern. Extensions to AspectJ
and Compose* are shown to illustrate how the concepts
can be easily embodied in particular languages. The exe-
cution model of ALIA4J is used to present the concepts in
a language-independent way, providing a prototype generic
implementation of the extensions, that can be used to imple-
ment them for both AspectJ and Compose*. The extensions
increase the flexibility of aspects, encourage reuse, and allow
expressing events and responses to them in terms natural to
the concern that an aspect treats.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.3.3 [Programming Languages]: Language Con-
structs and Features—Modules, packages

General Terms
Languages, Design

Keywords
Aspect-oriented programming, event declarations and detec-
tors, aspect and event composition

1. INTRODUCTION
Two main directions are presented here in order to make

the use of aspects (sometimes also called concerns or aspect

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’11, March 21–25, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0605-8/11/03 ...$10.00.

beans) more natural for programmers. First, we fully sepa-
rate the identification of relevant events from the response
to those events by adding event declarations that make it
easy to accumulate information over time. Second, we pro-
vide support so that both events and aspects can be easily
composed into more complex events and aspects.

Aspects express both when they are to be applied, and
what they are to do, and there has always been some at-
tempt to separate these two facets [15], e.g., with AspectJ
[14] pointcuts versus advice code. However, this separation
has been imperfect, and in many cases, aspect advice is used
to gather and accumulate information needed to determine
when an aspect should be applied, as well as to show what
must be done as a result of application. This resulting mix-
ing (“tangling” in aspect terminology) of event identification
and responding to events makes aspects hard to understand,
and complex to specify and verify.

What is more, aspect languages today—including AspectJ,
Composition Filters [3], CaesarJ [2], etc.—are overly depen-
dent on the structure and organization of the code. The
programmer is forced to express concerns in terms of code-
level events, usually method calls, that may be very far from
the natural expression of when the aspect is relevant.

It also is difficult to combine aspects into more complex
aspects. When multiple aspects are woven into a system,
even without composing them into a new aspect, it is not
clear how they should interact. Consider a logging aspect
L, and an aspect for performance evaluation P that counts
operations. When both are woven to a system (or when the
two are composed), should L log the operations of P in addi-
tion to those of the underlying system? Should P count the
operations that L performs in addition to counting underly-
ing system operations? Or should they both be applied to
an underlying system, without influencing each other? All
of these are possible, and the correct composition depends
on the intention of the programmer.

Our extension proposes reestablishing the desired sepa-
ration between when and what—which exists already in the
early conceptual work, but never completely made it into ac-
tual languages—by doing all detection of events separately
from responses (that are left for the aspect construct). In
addition to defining events using declarative predicates (as
in AspectJ’s pointcuts), we propose event declarations as an
explicit language construct that resemble aspect code but do
not have external side-effects. This separation is especially
natural when alternative responses are possible to the same
complex event.

285

For the composition of multiple aspects, we provide a pow-
erful notation that allows expressing if and how the com-
posed aspects influence each other at a fine granularity. The
convenient composition of events and aspects, proposed in
this paper, allows defining building-blocks of named, simple
events and responses to them, and then using the names in
defining a hierarchy of more abstract events and aspects.

A common example of the flexibility needed can be seen in
potential discount policies of (online) stores, such as Ama-
zon. A discount could involve a particular kind of product, a
particular manufacturer, the amount of the total purchases
made by a client over a given period, the geographic location
of the purchaser, special holiday periods, and so on. There
could either be conflicting or complementary discounts, or
complex criteria for a single discount based on information
and events from completely different parts of the system.
Moreover, the discount policies change frequently, and are
not a fundamental part of the underlying system.

The events triggering a discount could be the accumula-
tion of a series of other events, or even the absence of other
events, and often involve terminology far from the method
names in the system. Thus, aspects seem to be appropriate
for such an application, but expressing them is far from easy
in present aspect languages.

As a more system-level application, consider an integrated
development environment such as Eclipse, where aspects
could be used over the Eclipse implementation code to moni-
tor or enforce desired software engineering development prac-
tices [18]. Relevant events for the aspects might include,
“creating a new class”, or “committing a modified version
of code to the repository”. However, the relevant code-level
events of Eclipse could be (and often are) internal method
calls with non-intuitive names, reacting to clicking a “finish”
button on a Wizard that has particular parameters, with
information boxes previously filled in an appropriate way.
As will also be demonstrated, sequences of events on several
levels are the most natural way to express both events and
responses, and this is difficult in existing aspect languages.

Yet a third, network application could be for run-time
monitoring and verification of message passing systems. In
that case, the flow of messages that are related, e.g., in a
sequence diagram, needs to be followed, and when abnormal
behavior is detected, recovery actions need to be initiated.
The abnormal behavior and the recovery actions may involve
the lack of an expected message, or an illegal sequence of
messages that need to be aborted or, as the case may be,
reproduced along a different path.

Thus, for server-side software, application-level systems
like development environments, and even for system moni-
toring and runtime verification, separating events from re-
sponses makes understanding and reasoning easier. A means
of composition to form a hierarchy of events and aspects, as
proposed in this paper, is required to naturally implement
all the above examples because the terminology used at the
code-level may be very distinct from the terms natural to an
aspect. Traditional code-level aspects often make it difficult
to express and understand the intention of the developer.

Rather than suggesting yet another aspect language that
would embody the ideas, we minimally extend existing as-
pect languages, so that the concepts can be integrated with
the experience and programming paradigm natural for each
language. The generic language extensions should allow the
ideas to be incorporated into a variety of languages.

Our extensions will facilitate the creation of reusable li-
braries of aspects and events, and of aspect-oriented frame-
works, as well as making aspects easier to use and verify. It
will help alleviate the well-known fragile pointcut problem
[27], by making most of the aspects independent of the code
in the system to which they are to be applied. Programmers
can then create hierarchies of aspects and of events, and
compose aspects and events from a library, independently
of any underlying code. Only at the basic level, where a
connection with a particular underlying code is created, ref-
erence will be made to specific methods and fields of the
underlying system. Moreover, besides the improvement in
classic AOP applications, our extensions can be seen as mak-
ing AOP appropriate for Complex Event Processing [16, 12].

In our view, a language design encourages modularity
when key conceptual units (e.g., events and responses) can
be easily expressed as syntactic units. It enables natural ex-
pression when the terminology appropriate for each concern
can be easily expressed in the syntactic program units that
treat that concern. To summarize the goals and contribu-
tions of our work:

• We present minimal language extensions for aspect-
oriented languages to completely separate responses
(that make externally visible changes to the system
or environment) from event definitions that describe
and signal when an event has occurred, accumulate
information over time, and use events to define other
events.

• We show examples and describe case studies demon-
strating that the extensions increase potential for mod-
ularity and enable a natural expression of concerns.

• We demonstrate the programming style that the ex-
tensions facilitate, and show how complex events and
aspect compositions can be expressed.

• We show how the extensions can be effectively imple-
mented and used for static analysis.

In Section 7, we further explain these goals and present
preliminary evidence that our extensions achieve them. Sev-
eral other works suggest language constructs or methodolo-
gies to increase the separation between events and responses,
as well as improving compositionality. A detailed compar-
ison with these works is delayed until after our extensions
are presented, and appears in Section 6.

In Section 2 we introduce the new concepts in general
terms exemplified by a preview of the AspectJ extension.
In Section 3, the AspectJ version is elaborated and an addi-
tional application is discussed. This is followed by a possible
Compose* realization of the extensions, demonstrating that
the extensions are relevant to different AOP languages and
discussing a third example application. In Section 5 an inter-
mediate execution model is introduced and used to provide
a semantics and a prototype implementation for the generic
extensions. This is followed by the related work and evalu-
ation sections. We conclude with some further discussion in
Section 8.

2. TERMS AND BASIC CONCEPTS
Below we explain the new language extensions for defin-

ing and composing events and for composing aspects, using

286

language-independent terminology. We also use the follow-
ing well-known terms: A join point is an occurrence (an
execution) of a primitive operation (where the primitive op-
erations are assumed to have a known semantics). A join-
point model for an aspect language defines which join points
are visible, i.e., can be considered in defining events. A join-
point shadow is an instruction in the code of the system
whose execution corresponds to a join point.

Event Declarations.
First, we introduce event declarations to allow defining

events in an imperative way. Such declarations resemble an
aspect declaration, but have no external side-effects: They
only can collect information in locally defined fields, and re-
turn control to the point at which they are activated. As
will be discussed in Section 7, using static analyses, it is
usually possible to check that all operations in an event dec-
laration are free of external side-effects. In addition, event
declarations have a list of event parameters, i.e., values or
references that are exposed by the event. They also can have
instances of a special operation called trigger() that indicates
the detection of the event being defined. The names of event
declarations are used in the event detectors defined below.

Event Detectors.
Event detectors are boolean expressions that match join

points during the program execution. They may have pa-
rameters that expose relevant parts of the system state at
matched join points. An event detector can be:

1. a primitive expression matching a join point on a low
abstraction level (like the built-in pointcut expression
primitives in AspectJ),

2. an identifier bound to an event declaration or to an
event detector, or

3. a logical combination of event detectors.

The boolean value of an event detector is true at a join
point either when the associated expression is true or the
associated declaration executes trigger(), and is false other-
wise. When it is true, we informally intend that the event
has been detected, and the event parameters must have ap-
propriate values or references to enable a response.

An event detector is, conceptually, evaluated at each vis-
ible join point, i.e., at each operation execution supported
by the language’s join-point model. Of course, optimizations
are possible so that event detectors are in practice only eval-
uated at join-point shadows where they might be true.

Event Compositions.
Because event detectors are boolean expressions, they can

easily be composed into new events by simply using logical
operations such as conjunction or disjunction. Event decla-
rations can also define new events as a sequence of simpler
events, keeping track of the needed hierarchy.

Consider the e-commerce discounts example in the intro-
duction. We here illustrate event detectors and declara-
tions using the AspectJ version of our extensions. We can
define the event RelevantPurchase(Purchase purchase) in terms
of method calls, using regular pointcut notation, to detect
whenever a relevant purchase is being made. Based on this,
we can define new events such as LowActivity to detect if the
number of purchases in a given period is too low:

1 event LowActivity(P product){
2 int LOWER BOUND = 100;
3 Info purchaseInfo = new Info();
4 after(Purchase purchase): RelevantPurchase(purchase) {
5 purchaseInfo.increase(purchase.product());
6 }
7 when(P product): call(P.timeDone()) && target(product) {
8 if (purchaseInfo.count(product) < LOWER BOUND) {
9 trigger(product);

10 }
11 purchaseInfo.reset(product);
12 }
13 }

Note that this event declaration accumulates information,
and has a conditional trigger based on the execution history.
It actually detects that certain events did not occur suffi-
ciently frequently during a given time period. The event dec-
laration LowActivityPurchase then can react to the LowActivity

event by storing the products which have low activity in
a local field of type Set, and identify subsequent purchases
where the purchased product is in this set, as in the listing
below. Presumably, it also reacts to another event by re-
moving products from the lowActivityProducts set, but we do
not include this here.

1 event LowActivityPurchase(C cart) {
2 Set<P> lowActivityProducts = new Set<P>();
3 after(P product): LowActivity(product) {
4 lowActivityProducts.add(product);
5 }
6 when(Purchase purchase): RelevantPurchase(purchase) {
7 if (lowActivityProducts.contains(purchase.product())) {
8 trigger(purchase.cart());
9 }

10 }
11 }

Basic Units and Aspect Declarations.
Usual AspectJ aspect declarations are composed of pairs

of pointcuts and advice, while Compose* filters have selec-
tors and typed operations. The pointcuts and selectors cor-
respond to event detectors, and the advice/typed operations
to responses, which are sequences of operations. An (event
detector, response) pair, plus information on when to re-
spond relative to the event (e.g., before, after) is called a
basic unit. It can be given a name, to help control how
aspects are composed.

An aspect declaration is an identifier (called the aspect
name), local declarations of fields or methods, and basic
units. It also may include compositions of other aspects, as
will be described below. Thus an aspect LowActivityDiscount,
in AspectJ syntax, could respond to the LowActivityPurchase

event, as in:

1 aspect LowActivityDiscount {
2 before(C cart): LowActivityPurchase(cart) {
3 cart.applydiscount(10);
4 }
5 }

Aspect Compositions.
A composition of aspects is defined by listing the aspects

in the composition, with the meaning that the aspect is com-
posed of the union of the component basic units. To deal
with composition options, modifiers are provided to possi-
bly remove or restrict the applicability of some basic units

287

in the composition. The modifiers can affect applicability of
basic units in two ways.

First, the scope of the event detector in a basic unit or
those in an entire aspect may be defined in terms of the
composed aspects. In particular, event detectors relevant for
basic units in one component aspect might not be applied
to another component aspect’s basic units. We say that A
ignores B, where A and B could be names of basic units or
of entire aspects.

Second, for basic units with events that share a join point,
we can control which responses are applicable when the
events are detected, i.e., one can be preferred with another
then excluded (A overrides B), or an order can be declared
(A precedes B). It could even be specified that no response
is to be executed when several are possible, but we have not
yet found examples where this seems reasonable.

For illustration, assume a FrequentCustomerDiscount aspect
that responds to a FrequentCustomerPurchase event detecting
when a customer has made enough purchases to justify spe-
cial treatment and is now making another purchase. When
a situation that justifies discounts both due to the product
having a low number of purchases, and due to a frequent
customer, only the frequent-customer discount should be ap-
plied:

1 aspect Discount composes FrequentCustomerDiscount,
2 LowActivityDiscount {
3 local declare overriding FrequentCustomerDiscount,
4 LowActivityDiscount;
5 }

Instantiation Strategy.
In most languages, including AspectJ and Compose*, as-

pects are also types and instances of these types exist. A
response is then executed in the context of such an instance
which it can access, for example, using the this keyword.
Typically, aspect languages allow defining a so-called in-
stantiation strategy that defines when to create and when
to reuse an aspect instance. In a composed aspect, the re-
sponses of basic units taken from the components must also
be executed in the context of an aspect instance, expected
to be of the type of the component aspect from which they
originate.

Different approaches to create and reuse the aspect in-
stances for composed aspects are conceivable and should be
chosen according to the programming style of the concretely
extended language. One possibility is (1) to compose the
types of the component aspects into the type of the com-
posed aspect. But this can lead to problems similar to those
of multiple inheritance [11], depending on, e.g., the type sys-
tem of the aspect language. As another approach, (2) ob-
jects can be composed instead of types; this means that the
composed aspect maintains separate instances of the com-
ponent aspects’ types which are used as the context when
executing a response originating from a component aspect.

Evaluation Order.
Regarding the evaluation strategy, given a collection of

event detectors and declarations, and a collection of aspects,
there are two basic operational semantics possible when a
new system operation is reached that is a join point:

1. All of the event detectors are evaluated once to de-
termine which of them is detected. Then all responses

from basic units are executed for which the correspond-
ing event has been detected, where any user-provided
restrictions on the partial order of basic units are con-
sidered.

2. First the order of potential basic units is determined
in advance, and their event detectors are evaluated in-
dividually just before deciding whether to immediately
execute the relevant response. This potentially leads
to evaluating the same event detector multiple times
if it is used by more than one basic unit.

Both approaches have their own trade-offs. In the first
semantics the result of an event detector is the same for
each basic unit applicable at the same join point. This im-
proves the analyzability of the program because it is known
which responses are executed together at the same join point
without having to consider the effect of preceding response
executions on the evaluation of an event detector. And the
fact that the event detector is true in the system state when
the join point occurs can mean that the user’s intention is
to execute the response, no matter what other responses do
in the meantime. If the user wanted to execute a response
only if some other response did or did not occur at the join
point being considered, that could be expressed using the
extended composition notation. The difficulty with this ap-
proach is that a response may change the state so that a
previously detected event would no longer be detected (or
would be detected with different values or references bound
to the event parameters) by the time the associated response
is considered.

In the second semantics, the evaluation of event detec-
tors can also consider changes in the program state that
are induced by preceding response executions. Thus, a pro-
gram may have different observable states at the same join
point, allowing basic units to refer to the program state more
accurately. The downside of this approach is the reduced
analyzability but also the increased difficulty in developing
event declarations: It must be considered that event decla-
rations are potentially evaluated multiple times at the same
join point. Consider the declaration of the LowActivity event
which contains a when basic unit that conditionally detects
the event and resets the internal state purchaseInfo in line 11;
this is allowed by our definition because this side-effect is
internal. Nevertheless, the result is that only the first eval-
uation of the event declaration at a join point will correctly
refer to the accumulated execution history. In the given ex-
ample, this would lead to undesired behavior, although there
may be examples where such behavior is intended. In gen-
eral, if the second semantics is applied, developers of event
declarations must be careful with when basic units that have
internal side-effects.

In the remainder of this paper, we adopt the first seman-
tics because it yields more analyzable programs and because
the semantics of event declarations with internal side effects
are clearer. Nevertheless, in Section 5.1 we also outline an
implementation approach for the second semantics.

3. AN ASPECTJ EXTENSION
In this section, we define extended AspectJ by (1) ex-

tending the pointcut notation to encompass more general
event detectors and adding event-declaration entities, and
(2) providing facilities for composing both event declarations

288

and aspects themselves to more complex ones in a hierarchy,
while dealing with the semantic issues seen in the previous
section. The extension presented here is only one possibil-
ity, where the new notation is intended to resemble similar
features already in the language, and default compositions
have been determined based on our subjective assessment of
the most common situation.

3.1 Event Detectors and Declarations
Some examples of event detectors and declarations in ex-

tended AspectJ have already been shown. Here we consider
the extensions in more complete terms. Any legal AspectJ
pointcut expression is also a legal event detector in the ex-
tension, and an event detector can be used wherever a point-
cut can appear in regular AspectJ. We now allow “global”
named event-detectors, not directly included in any aspect.
An event detector can also include a name bound to an event
declaration. An event declaration differs from an aspect in
the following ways:

• In an event declaration, the event keyword appears at
the beginning instead of aspect and the event’s name is
followed by a parenthesized list of formal parameters
(consisting of a type and a name) denoting the context
exposed by the event.

• Basic units in event declarations cannot change non-
local fields, or redirect control.

• An event declaration can contain special basic units
beginning with the when keyword (instead of before,
after or around) which may use the new, built-in opera-
tion trigger() to announce the identification of an event.
The signature of the trigger() operation corresponds to
the formal parameters defined for the event itself.

A when basic unit allows a response that identifies the
event being declared with the same join point as it responds
to. When the trigger() operation is executed in this response
(which may conditionally depend on, e.g., local fields in the
event) the named event is detected and the event parame-
ters are made available. The choice of the word “when” is
supposed to emphasize this behavior of the corresponding
response, i.e., affecting the join point as a whole rather than
having an effect at the beginning or ending of the join point.

Introducing the when keyword also has another benefit.
It allows syntactically identifying basic units that can use
trigger() in their response. This is similar to the proceed()

operation which may only be used in around advice.

3.2 Aspects and Compositions
Turning to aspect definitions in extended AspectJ, the

main change is that an aspect can now also be defined as
a combination of other aspects. To do this, component as-
pects can be listed in the head of the aspect and composition
modifiers can optionally be specified in the aspect body. To
facilitate expressing the modifiers on a fine-grained level, a
basic unit can have an optional name before the regular As-
pectJ before, after, or around keyword of a basic unit. If these
names are not defined, modifiers can only be specified for all
basic units in a component aspect at once.

In the definition of an aspect, the composes clause can be
added to the aspect header (similarly to extends or implements

in standard AspectJ) listing all component aspects. All ba-
sic units from the component aspects are included in the

composition. Additionally, a composed aspect can also de-
fine new basic units.

Without further configuration, the execution order at join
points shared by multiple basic units is unspecified. All ba-
sic units whose event-detector matches a join point are ex-
ecuted, and event detectors from basic units are applied to
the execution of the underlying system as well as to all re-
sponses in the composition. This default behavior is identi-
cal to that of AspectJ when all component aspects are active
individually.

The syntax to modify this default is in the style of As-
pectJ’s inter-type declarations using the declare keyword.
However, we add the keyword local before the declare key-
word to emphasize that the modification is in the context of
a composition. This can be followed by precedence, overriding,
or ignoring keywords that relate two aspects appearing in the
list of composed aspects.

With the local declare precedence statement precedence re-
lations for all possible combinations of basic units in a pair
of aspects are defined at once. This default relation can
optionally be overruled for single pairs of basic units from
these aspects using the except keyword. This keyword is fol-
lowed by a list of basic-unit-name pairs defining that the
precedence between these basic units is the reverse of the
precedence defined between their containing aspects. This
two-staged definition of relations between the basic units in
component aspects allows to define relations at a fine gran-
ularity in a space-saving way.

The local declare overriding statements have a similar form.
Aspect A overrides aspect B means that if basic units from
A and B are jointly applicable at a join point, only the re-
sponses of units from A should execute. Exceptions can be
defined using the except keyword as above to reverse the
overriding. Additionally the nooverride keyword is followed
by a list of basic-unit-name pairs which do not override each
other: At join points where a pair in this list are both ap-
plicable, both their responses will be executed.

The modifier local declare ignoring has a similar form. When
aspect A ignores aspect B, responses of basic units taken
from A are not executed when the relevant event detector is
true because of a join point in the scope of B. The keyword
noignore followed by the name of a basic unit in A declares
that this basic unit does apply to events caused by basic
units of B.

Since event declarations are very similar to aspect decla-
rations, we can compose event declarations in the same way
as described above. However, event declarations can only be
composed using the composes clause when they have match-
ing event parameters, i.e., the same number and types of pa-
rameters in all components and in the composed event dec-
laration. Otherwise, the parameters of the resultant compo-
sition are not well-defined. In general, we prefer to compose
events using logical combinations of event-detector expres-
sions, or using a when basic unit with a response containing
a trigger operation to define the exposed context in terms of
values and references exposed by the component events.

As mentioned in Section 2, aspects are types in AspectJ—
in fact, the AspectJ compiler even creates Java classes for
aspects—and response code can use the keyword this to ac-
cess fields and methods of an instance of this type. The
strategy for creating and reusing aspect instances at a join
point is determined by the instantiation strategy defined in
the aspect header. In our AspectJ extension we follow the

289

approach of composing instances, presented in Section 2, in
a way that considers the instantiation strategy of the compo-
nent aspects. That means at a join point where a component
basic unit is executed, the strategy defined by the original
aspect’s instantiation strategy is used to create or reuse an
instance of the original aspect class.

When an aspect A is in effect individually and another
aspect C is in effect that composes A with other aspects,
two equivalent responses may be executed at a join point
and both expect to execute in the context of an instance of
A. In extended AspectJ, aspect instances are managed sep-
arately for individually active aspects and for aspects active
in a composition. Thus in the example, both responses are
executed in the context of a different aspect instance, but
the strategy of when to create and when to reuse an aspect
instance is the same. Because we require that instances of
the component aspects exist, they must be concrete.

In the AspectJ programming model, every aspect which
is compiled is also in effect. Nevertheless, with the so-called
Load-Time Weaving1 supported by the standard AspectJ
tool suite, a configuration file can be provided that defines
which aspects are supposed to be active. This configuration
file can be used to enable and disable composed aspects and
their components individually.

3.3 Development Practices Example
Consider a hierarchy of events for monitoring whether

desired development practices are being followed. In par-
ticular, we wish to detect whether a code file, previously
checked out for local development, has been properly tested
before being committed to the source control repository.
The event-declaration code below uses the lower-level events
characterized in the following. CodeModified occurs whenever
the specified code file is changed. CommitBegun occurs when
an attempt is begun to check the code back in. The event
TestSucceeds occurs when a test suite (e.g., in JUnit) is exe-
cuted and the test suite finishes successfully, while TestFails

occurs when a test suite finishes but not all tests in it suc-
ceed.

The first event declaration in the example below uses these
events to detect whether the latest activation of the test
suite succeeded or failed, using a Set to record this state
per code file. It defines the CommitWithFailingTest event as
occurring when the commit dialog for a file is just about
to begin where the last test run for that file failed. The
second declaration simply defines TestRun as either of the
events TestSucceeds or TestFails. The third event uses the
newly defined one to define CommitWithoutTest as the event
denoting an attempt to commit without having run the test
suite at all since the last modification of the code, again
using local Set fields to record past events to be checked when
a commit dialog is attempted. Finally, the different kinds of
errors are combined into a higher-level CommitViolation event.

1 event CommitWithFailingTest(File code) {
2 Set<File> failedTests = new Set<File>();
3 after(File code): TestFails(code) {
4 failedTests.add(code);
5 }
6 after(File code): TestSucceeds(code) {
7 failedTests.remove(code);
8 }

1http://www.eclipse.org/aspectj/doc/released/
devguide/ltw-configuration.html

9 when(File code): CommitBegun(code) {
10 if (failedTests.contains(code))
11 trigger(code);
12 }
13 }
14

15 event TestRun(File code) :
16 TestSucceeds(code) || TestFails(code);
17

18 event CommitWithoutTest(File code) {
19 Set<File> testedFiles = new Set<File>();
20 after(File code): CodeModified(code) {
21 testedFiles.remove(code);
22 }
23 after(File code): TestRun(code) {
24 testedFiles.add(code);
25 }
26 when(File code): CommitBegun(code) {
27 if (!testedFiles.contains(code))
28 trigger(code);
29 }
30 }
31

32 event CommitViolation(File code):
33 CommitWithoutTest(code) || CommitWithFailingTest(code);

These (and other) events can then be used in aspects that
react to them in various ways. Below are a few examples.
The Logger aspect defines a basic unit with the side-effect
of writing (to a persistent log) a message containing the file
name for which an attempt to commit has been detected.
The Proactive aspect runs the test suite when there is a vio-
lation. It proceeds to the commit dialog when the problem is
solved, and otherwise cancels the commit, while announcing
to the user that code modification and retesting is needed.

1 aspect Logger {
2 Log myLog;
3 before(File code): CommitBegun(code) {
4 myLog.info(”Attempt to commit ” + code);
5 }
6 }
7

8 aspect Proactive {
9 void around(File code): CommitViolation(code) {

10 boolean testSucceeded =
11 code.testSuite.run(code);
12 if (testSucceeded)
13 proceed(code);
14 else
15 print(”Correct and retest before commit”);
16 }
17 }

In the example so far, it is not specified in which order
responses are executed at a CommitBegun join point which
can ultimately also be a CommitViolation join point. Since it
is desired to log any attempt to commit code, the Logger as-
pect should precede Proactive when they are used together.
Furthermore assume that the Logger aspect contains more
basic units logging different operations relevant to a devel-
opment process, such as test-suite execution. If only user-
triggered operations should be logged, operations executed
by the Proactive aspect must be ignored.

Finally, consider an aspect Prevention that contains basic
units that respond to any violation of a development prac-
tice by preventing the underlying operation from executing.
When this is used together with the Proactive aspect, execut-
ing the basic units from the latter should be favored over the
basic units from the former. The aspect DevelopmentPractices

290

object

interface

interfaceinput filte
r

input filte
r

output filter

output filter

object

interface

input filte
r

input filte
r

output filter

output filter

call

retu
rn ca

ll

re
tu

rn

Figure 1: Diagram of an object with superimposed
filters and how they participate in input and output
messages.

shown below composes the three aspects Logger, Proactive,
and Prevention into one aspect that fully specifies their rela-
tions.

1 aspect DevelopmentPractices
2 composes Logger, Proactive, Prevention {
3 local declare precedence Logger, Proactive;
4 local declare precedence Logger, Prevention;
5 local declare overriding Proactive, Prevention;
6 local declare ignoring Logger, Proactive;
7 }

4. EXTENSIONS TO COMPOSE*
Compose*2 is a language and compiler for the Composi-

tion Filter Model (CFM). In the CFM, the messages that are
exchanged between objects are processed by a group of filters
superimposed on objects modifying their interface as illus-
trated in Figure 1. The messages and the objects that send
or receive them form the basic elements of the Compose*
join-point model. Two sorts of messages are distinguished:
input (left-hand two arrows in the figure) and output (right-
hand two arrows), which are, respectively, equivalent to the
method invocations on and by an object. Each message has
two flows, call and return, which represent points before and
after the execution of methods for input messages, respec-
tively, method invocations for output messages.

Filters define both when they are to be applied, and what
they are to do. The former is expressed by specifying appli-
cation messages that are accepted by the filter, while others
are rejected. The functionality of a filter is implemented
in the filter’s type which processes the accepted and/or re-
jected messages. This implementation can, in general, also
modify message properties, e.g. the message name, the tar-
get object, or the flow; the applicability of subsequent filters
is determined considering the changed message properties.
Developers can use built-in filter types and define new ones.

Filter modules group one or more filters and are the unit
of superimposition, i.e., filter modules can be deployed indi-
vidually. We extend Compose* with new constructs to facil-
itate the explicit declaration of events, separation of events

2http://composestar.sf.net/

from responses, and composing events and responses. In the
following we provide a brief explanation of the extensions.

4.1 Event and Response Declarations
In extended Compose* there are two new categories of

filters called events and responses. In contrast to ordinary
Compose* filter types, event types cannot modify message
properties, so that external side-effects are prevented. Ex-
tended Compose* provides built-in event types, and also
provides an API to define new dedicated event types. For
example to compose events using temporal logic operators,
a new event type must be defined that evaluates a tempo-
ral logic formula and triggers an event based on the result
of evaluation. Custom event types are implemented in the
same way as custom filter types but should additionally con-
tain a trigger operation.

Each event declaration contains a set of selectors that
specify events or application messages over which the event
is declared. The selectors may be combined with boolean
predicates to incorporate runtime values in the selection pro-
cess. An event type may receive or expose information via
its parameters. Responses are similar to ordinary Compose*
filters, except that they can only select events.

4.2 Filter Modules and Compositions
As noted above, Compose* filters and other declarations

are grouped in filter modules that are units of superimposi-
tion. Data fields can be declared within a filter module and
the fields can be used by the events and filters within the
filter module to maintain state information. Two types of
data fields are distinguished: internals and externals. The
internals are instantiated for each instance of the filter mod-
ule, while externals are instantiated outside the filter module
and can be shared among multiple filter module instances or
application objects. Conditions can also be defined within
filter modules, and they can be used in the declarations of
events and filters to form more complex predicates in the
selection of messages.

Filter modules are extended with event and response dec-
laration blocks. To avoid external side-effects, events cannot
modify the external data fields defined within filter modules.
In our extension, a filter module can also be composed from
other filter modules. In this case, the composite filter mod-
ule can refer to the events declared within the component
filter modules, for example, to define composed events or
to define a response. The possible composition rules among
the filter modules can be defined within the composite filter
module.

4.3 Superimpositions
A superimposition selector chooses a set of classes using

a query language and superimposes a specified filter module
on their instances. Individual instances of a filter module
are created for individual instances of classes on which the
filter module is superimposed. As part of our extensions,
it is possible to superimpose a filter module as a Singleton,
so one single instance of the filter module will be shared
among all instances of classes on which the filter module is
superimposed.

In the superimposition of a composed filter module, the
component filter modules are superimposed on the same
classes as the composed one, unless specific superimpositions
of the component filter modules are specified. At runtime

291

the composition relation is maintained between instances of
composed and component filter modules.

When a filter module is superimposed on an object, all in-
coming/outgoing messages to/from the object are received
by the event declaration blocks defined within the filter mod-
ule, if any. If the message is selected by the event declara-
tion block, the event type’s action is executed to determine
whether the event is detected. If so, the event is triggered.
Composed events that select the triggered event are evalu-
ated in the same way. After all events are evaluated, the
responses defined for the events (i.e., filters that select the
events) are executed.

If a composed filter module refers to an event defined
within a component filter module, upon the detection of
the event, all instances of the composed filter module are
notified.

4.4 Runtime Verification Example
Runtime verification aims at monitoring the active exe-

cution trace of a program, checking it against the formally
specified properties of the program, and possibly taking a
recovery action if the properties are violated. In our termi-
nology, monitors are mapped to event declarations, because
they collect information about the state of a program over
time. They detect events when the status of some condition
becomes available, usually when a desired condition does not
hold, and they must not have external side-effects on the
program. One may argue that monitors may slow down the
program, so they have side-effects on programs by influenc-
ing execution times. However, we only refer to side-effects
on the program state. Recovery actions can change the state
of the program, so they are mapped to responses.

To illustrate the influence of our extensions on the devel-
opment of monitors and recovery strategies, in the following
we provide an example and illustrate its implementation in
extended Compose*. Assume that we want to log informa-
tion about incorrect runtime accesses to a file, and to prevent
such accesses. A correct access has two properties: (1) It is
performed by an authenticated user; (2) it complies with
the usage protocol defined for the file. If an access to a file
does not satisfy the above properties, we would like to log
its relevant information and prevent it. The filter modules
declaring relevant events and filters are presented below.

The event representing un-authenticated accesses to a file
is defined in the filter module AccessError. Here, we assume
that the method isAuthenticated(), defined in the application
class User, specifies whether the current user is authenti-
cated. The attempts of an un-authenticated user to access
a file is detected by the event eNotAuthenticated. The type
BooleanDetector is a built-in event type in extended Com-
pose*, which evaluates a boolean predicate expressed over
application messages, and triggers the event if the result of
evaluation is true. In our example, the event is triggered
on the call flow of all input messages when the value of
authenticated is false:

1 filtermodule AccessError {
2 conditions
3 authenticated: User.isAuthenticated();
4 inputmessages
5 eNotAuthenticated:BooleanDetector=
6 (!authenticated && selector ==[∗.∗]);
7 }

The incorrect accesses to a file are detected by the event
eProtocolViolation defined in the filter module ProtocolError.
The user-defined type RegularExpressionViolation receives a reg-
ular expression predicate as its input, and evaluates it against
the selected messages. If the order of messages does not
comply with the predicate, the violation is triggered as an
event. A correct access to a file starts with the execution of
the method open, followed by zero or more times read and/or
write, and is finished by the execution of close:

1 filtermodule ProtocolError {
2 inputmessages
3 eProtocolViolation:RegularExpressionViolation=
4 (selector == [’read’,’write’,’open’,’close’]) {
5 event.predicate =
6 ”(open (read | write)∗ close)∗”;
7 }
8 }

Both events are composed in the filter module FileErrors, so
when either event happens, the event eFileError is triggered:

1 filtermodule FileErrors composes AccessError, ProtocolError {
2 inputmessages
3 eFileError:BooleanDetector=
4 (selector==[’eNotAuthenticated’, ’eProtocolViolation’]);
5 }

The filter module LogAccesses encapsulates a response to
this event; therefore, it is composed with FileErrors to be able
to refer to the event eFileError. The filter logger of the user-
defined type Log receives the information to be logged as
its parameter. Here, inner refers to the object on which the
containing filter module is superimposed. The name property
of this object is logged when the response is executed:

1 filtermodule LogAccesses composes FileErrors {
2 filters
3 logger:Log=
4 (selector == [’eFileError’]){
5 filter.info = inner.name
6 }
7 }

The filter module PreventAccesses encapsulates another re-
sponse to the event eFileError. The filter prevention of the
user-defined type Prevent intercepts the call flow of messages
and prevents their execution. The filter module AccessControl

composes PreventAccesses and LogAccesses to define the exe-
cution order of the responses. Here, the information about
incorrect accesses must be logged, before the accesses are
prevented:

1 filtermodule PreventAccesses composes FileErrors {
2 filters
3 prevention:Prevent=
4 (selector == [’eFileError’])
5 }
6

7 filtermodule AccessControl
8 composes PreventAccesses, LogAccesses {
9 constraints

10 precede (LogAccesses, PreventAccesses);
11 }

The listing below depicts the superimposition of the above-
defined filter modules on application classes. We assume
that the classes, which implement the functionality to ac-
cess files, are defined in the namespace Application and have

292

the suffix File. The superimposition of AccessControl implies
that at runtime individual instances of AccessControl and its
component filter modules are bound to individual instances
of the selected classes.

1 superimposition{
2 selectors
3 fileSelector = {C| isClassWithName (’Application.∗File’)};
4 filtermodules
5 fileSelector <− AccessControl;
6 }

The above listings show the possibility to define sepa-
rate monitors (events) and recovery strategies (responses)
and compose them with each other. This helps to localize
changes, and consequently improves the modularity, reusabil-
ity and maintainability of different runtime-verification con-
cerns. For example, if the access pattern of a file changes, a
developer only needs to modify the filter eProtocolViolation
defined in the filter module ProtocolError, and the other
filters remain unchanged.

5. AN EXECUTION MODEL FOR EVENTS
AND COMPOSITION

After we have presented two concrete language extensions,
in this section we explain the extensions we have formu-
lated in Section 2 in a language-independent way. This
provides an implementation path for including the exten-
sions in various AOP languages. Therefore we have ex-
tended previous work, the Advanced-dispatching Language-
Implementation Architecture for Java (ALIA4J) [5, 4] which
provides generic implementations of language concepts, in-
cluding those in aspect languages. In the following subsec-
tion we present the building blocks of extended ALIA4J’s
execution model. In subsection 5.2 we present functions op-
erating on the model that realize the requirements for com-
posing and refining whole aspects naturally.

5.1 A Semantics for the Execution Model
The first major component of ALIA4J is the Language-

Independent Advanced-dispatching Meta-model (LIAM) for
expressing advanced-dispatching declarations and relation-
ships among them. In the context of aspect-oriented lan-
guages, dispatch is the identification of a join point and
execution of appropriate responses. Advanced-dispatching
declarations correspond to declarations of basic units. Code
of the program not using advanced-dispatching mechanisms
is represented in its conventional Java bytecode. This is also
true for responses written in the base language as is the case
in, e.g., AspectJ.

The second component of ALIA4J is the Framework for
Implementing Advanced-dispatching Languages (FIAL). A
FIAL-enabled execution environment can deploy and unde-
ploy basic-unit declarations and relations between them con-
forming to LIAM. The framework embodies the semantics
of executing LIAM-based basic-unit declarations by defining
an algorithm to derive an execution strategy per join-point
shadow that considers all currently deployed declarations.

It has been demonstrated that ALIA4J is suitable to real-
ize the languages AspectJ, Compose*, CaesarJ and JAsCo [6].
A mapping of these languages to ALIA4J is provided in an
electronic appendix3; for AspectJ even a tool that facilitates
3http://www.alia4j.org/alia4j-languages/mappings.
html

an automatic creation of LIAM models from AspectJ source
code is provided.

The extensions to ALIA4J presented in the following lay
out the path to implementation of our extensions for lan-
guages supported by ALIA4J. Extending the AspectJ trans-
lator tool to support extended AspectJ source code or imple-
menting a similar tool for Compose*, however, is still future
work. The implementation of the extensions is contributed
to the main development branch of ALIA4J4.

5.1.1 Basic Unit Declarations

Meta-Model.
Figure 2 shows the meta-entities of LIAM for defining a

basic unit. For better readability, we use names for the
LIAM entities that correspond to the terminology intro-
duced in Section 2 whenever possible. We capitalize terms
when referring to the LIAM entity.

The Basic Unit entity consists of three components: Re-
sponse defines the response functionality and a set of Spe-
cializations defines the event detector: When a join point
matching one of the Specializations is detected, the response
is executed with the system state exposed by that Specializa-
tion; Schedule Information specifies when it should execute
relative to the join point, i.e., before, after or around the
underlying operation.

A Specialization matches join points by means of a Pat-
tern and a Predicate. The former is evaluated based on static
properties of the join point’s shadow instruction, the latter
based on the dynamic state, in terms of Atomic Predicates,
at the join point. Contexts model the exposed system state.
Atomic Predicate and Context itself can also refer to Con-
texts meaning that they require certain context values to be
evaluated themselves.

LIAM now has three concrete entities that require special
treatment in the algorithm that derives the execution strat-
egy from Basic Units: An Event Triggering Response, with
a property specifying the name of an event, corresponds to
a response that can perform the trigger operation proposed
in Section 2. If the trigger operation is executed, the Event
Triggering Response notifies FIAL of the detection of the
named event, also providing the event-parameter values. An
Event Atomic Predicate has a property specifying an event
name; when the named event has been detected at a join
point, the Event Atomic Predicate evaluates to true, oth-
erwise it evaluates to false. Finally, an Event Context has
two properties, i.e., the name of an event and the name of
a parameter of this event; the Context evaluates to the pa-
rameter’s value.

In Section 2 we defined two alternative semantics for eval-
uating event-trigger basic units. The choice of the supported
semantics significantly impacts the execution model, which
is why extended ALIA4J only supports one semantics. As
discussed in the same section, in this paper we favor the se-
mantics in which all event detectors are evaluated at once
and then all responses of basic units referring to detected
events are executed. This semantics elegantly integrates
with ALIA4J’s execution model [23] in which an Atomic
Predicate (and, thus, an event detector) can only discrimi-
nate events by referring to values as they are before the first
response execution. Nevertheless, we discuss the implica-

4http://www.alia4j.org

293

Basic Unit

Response Specialization Schedule Information

Context Predicate Pattern

Atomic Predicate

Basic UnitBasic Unit

ResponseResponse SpecializationSpecialization Schedule InformationSchedule Information

ContextContext PredicatePredicate PatternPattern

Atomic PredicateAtomic Predicate

1..*

*
*

* 0..1

0..2

Figure 2: Entities of the Language-Independent Advanced-dispatching Meta-Model (LIAM) as UML class
diagram.

tions of the second semantics, i.e., an alternative execution
strategy, on the ALIA4J implementation below.

Execution Strategy.
For each join-point shadow in the executed program those

Basic Units are determined that have a Specialization with
a Pattern matching the join-point shadow; these are called
the matching Basic Units and correspond to Basic Units
with a Response that is potentially executed at a join point
caused by this shadow (we also write executing a Basic Unit
as an abbreviation of executing a Response referenced by
the Basic Unit).

All Basic Units that have an Event Triggering Response—
we refer to them as Event Triggers—are first removed from
the set of matching Basic Units and treated specially. The
matching Event Triggers must be executed first to ensure
that all appropriate trigger operations have been performed
before event names referred to in the evaluation of Special-
izations of other Basic Units.

Since Specializations of an Event Trigger F may them-
selves depend on events detected by another Event Trigger
E, an order for evaluating the Event Triggers must be de-
termined in which E is evaluated before F. For this purpose,
an Event Dependency Graph is created which consists of the
matching Event Triggers as nodes with a directed edge be-
tween two Event Triggers E and F iff F has an Event Atomic
Predicate or an Event Context depending on the event de-
tected by E. This graph is topologically sorted resulting in
a legal execution sequence. This is not possible if the graph
contains cycles, which is therefore forbidden.

Whenever a join-point shadow is executed, the Event Trig-
gers are evaluated in the order determined as described above.
When an Event Triggering Response is executed that per-
forms the event-trigger operation, the event is detected and
its parameter values are recorded. Event Atomic Predicates
subsequently evaluated at the same join-point-shadow exe-
cution look up the event’s detection while subsequent Event
Contexts can retrieve needed parameter values.

Next, the execution algorithm of ALIA4J continues with
the remaining matching Basic Units. The so-called dispatch
function is created from all Predicates associated with the
Specializations whose Pattern has matched. This is evalu-
ated to the set of applicable Basic Units, i.e., Basic Units
with a Specialization whose Pattern matches the join-point
shadow and whose Predicate is satisfied. Being applicable
does not necessarily mean that the Response associated with
the Basic Unit is also executed, as is detailed in the following
subsubsection.

Alternative Execution Strategy.
In the second semantics, Event Triggers are only executed

when an Event Atomic Predicate refers to them. There-
fore, all Event Triggers are removed from the matching Ba-
sic Units. The Event Dependency Graph is not needed.
Each Predicate of a Basic Unit is brought into the form of
a conjunction of two subpredicates, one with the non-Event
Atomic Predicates and the other with the Event Atomic
Predicates. The dispatch function is formed from only the
non-Event Atomic Predicates of the matching Basic Units.
Each Response is then associated with the relevant conjunc-
tion of Event Atomic Predicates, called the residual dispatch
function, that is evaluated just before the Response is to be
executed, which ultimately only happens when the evalua-
tion is successful.

5.1.2 Relations Between Basic Units

Meta-Model.
Besides modeling the Basic Units themselves, LIAM also

can model relations between Basic Units applicable at the
same join point. Two kinds of relations are supported,
namely composition rules and ordering relations.

A Composition Rule specifies requirements and restric-
tions for Basic Units executed together at the same join
point and is defined by four sets of Basic Units: Present,
Absent, Required, and Forbidden. A set of Basic Units S sat-
isfies a Composition Rule if whenever S contains the Basic
Units in Present, and does not contain the Basic Units in
Absent, then S also contains the set Required, and does not
contain any Basic Unit in the set Forbidden.

When the Required set is empty, a Composition Rule can
heal sets of Basic Units that violate the rule. That is, when
a set of applicable Basic Units S contains the set Present,
and does not contain any Basic Units in Absent, but also
has Basic Units in Forbidden, simply remove the latter ones
from S to obtain a set that satisfies the rule. This behavior
for a Composition Rule can be enabled by setting its boolean
property heal to true.

Adding Basic Units from the Required set of a Composi-
tion Rule that were not applicable at a join point in the first
place is not possible because there is no way to make them
applicable: A Specialization of a Basic Unit forms a con-
tract between the Response and the join point at which it is
executed. It defines properties of the program state at these
join points and it defines which context values are exposed
to the Response. Since the needed properties do not hold
at a join point where a Basic Unit was not applicable in the
first place, and since it is unspecified which values to expose,

294

it is generally not possible to execute a Basic Unit without
a matching Specialization. Therefore the heal property of a
Composition Rule may only be enabled when the Required
set is empty.

For ordering, Precedence Rules can be defined, which as-
sociate two Basic Units of which one has the preceding and
the other the preceded role. Precedence Rules cannot be
specified between a Basic Unit with a “before” Schedule In-
formation and another with an“after”Schedule Information,
furthermore, cyclic rules are prohibited.

Execution Strategy.
The set of applicable Basic Units is further refined accord-

ing to the Composition Rules with heal set to true. Because
excluding Basic Units from execution changes the combina-
tion of Basic Units, new Composition Rules may be appli-
cable afterwards and therefore healing rules must be recur-
sively applied until no more are applicable.

To enable the algorithm for healing rules, a graph is main-
tained with healing Composition Rules as nodes and di-
rected edges between them. The edges reflect two possible
relations between Composition Rules r1 and r2: r1 enables
r2, when r1.Forbidden ∩ r2.Absent 6= ∅ and r1 disables r2,
when r1.Forbidden ∩ r2.P resent 6= ∅. The enables rela-
tionship only means that the rule r2 should be reevaluated
after applying the healing according to rule r1. Whether r2
actually will match the applicable Basic Units after r1 is ap-
plied depends on the concrete set of applicable Basic Units.
In contrast, the disables relationship means that r2 cannot
match after r1 has been applied.

This graph must not contain cycles where at least one edge
is labeled disables because at least for one Composition Rule
the precondition of present and absent Basic Units does not
hold in the end result. Therefore the rule should not have
been applied in the first place, which is a conflict. Cycles
where all edges are labeled enables are legal, but the above
algorithm must keep track of rules already applied in order
to avoid an infinite recursion in such a case.

After determining a subset A of the applicable Basic Units
which satisfy all those rules, the Composition Rules that
have the healing property set to false still have to be checked.
The set of matching Composition Rules is constructed as
R = {r|r.Present ⊂ A ∧ r.Absent ∩ A = ∅}. If at least
one rule r ∈ R is not satisfied, i.e., r.Required * A or
r.Forbidden ∩ A 6= ∅, the combination of Basic Units is
illegal and an error is raised.

Using the Precedence Rules and the relative order defined
by the Schedule Information of the Basic Units to execute,
an ordered tree is determined defining the execution order.
A node corresponding to an “around” Basic Unit can refer to
nodes corresponding to other Basic Units which are executed
when the former performs the “proceed” operation. More
details on the execution order of Basic Units can be found
in [5].

Since the active Basic Units only change at deployment
time, the execution strategy for join-point shadows and aux-
iliary graphs are generated at deployment and cached in
ALIA4J. This is done as an optimization, but it also allows
reporting violations of Composition Rules at deployment
time instead of at the execution of a join point. Due to lazy
class loading in Java, new join-point shadows may be added
to the running system dynamically. For join-point shadows
in classes loaded at deployment, the execution strategy can

be created. For join-point shadows added later, a new exe-
cution strategy is created. Thus violations of Composition
Rules are reported at class-loading time.

Alternative Execution Strategy.
Composition Rules define which Responses may or may

not be executed together. However, with the second seman-
tics of event-declaration execution, it is not always known in
advance which Responses will be executed at a join point.
Consider a healing Composition Rule whose Present set con-
tains the Basic Unit b1 and whose Forbidden set contains the
Basic Unit b2. Furthermore consider that b1 depends on an
Event Atomic Predicate and that a Precedence Rule exists
such that b2 is executed before b1. Then b2 must only be exe-
cuted if the event associated with b1 is not detected, but this
is not known at the time when b2 is executed. Thus, with the
alternative semantics, Composition Rules can, for instance,
only be resolved when the Basic Units in the Forbidden set
are ordered after those in the Present set. Similar consider-
ations hold for healing Composition Rules with a non-empty
Absent set or for non-healing Composition Rules.

5.2 Realizing High-Level Languages with the
Execution Model

In AO source languages, generally the central unit is an
aspect which is comprised of multiple basic units. Therefore
operations like defining precedence are specified in terms of
aspects rather than single basic units as is the case in the
execution model. Similarly, our proposed composition oper-
ators for natural aspects should be able to compose aspects
and not only basic units.

For those operations relevant in the context of this paper,
here we present functions in the FIAL framework that con-
vert aspect-level operations to operations in terms of the exe-
cution model. The conversion algorithms use an Aspect data
structure that has the sets BasicUnits, CompositionRules,
and PrecedenceRules representing the basic units, compo-
sition and precedence rules defined in a source-level aspect.
Generally, an aspect has a corresponding class defining fields
and methods that can be used by the aspect’s responses.
Therefore, a response requires access to an instance of this
class, the so-called aspect instance. In the meta-model an
aspect’s Instantiation Context is used by a Basic Unit to
specify how to retrieve the aspect instance.

There are other features of aspect languages that have no
direct correspondence in ALIA4J and have to be realized by
defining Basic Units in certain ways. Examples are abstract
aspects in AspectJ or parameterized filter modules in Com-
pose*. Examples of how to create Basic Units to realize such
language features can be found in our electronic appendix.

Composing multiple aspects into a new one effectively cre-
ates new basic units. While these basic units are not explicit
in the source code, we create Basic Unit entities for them
in the execution model. Creating new Basic Units makes it
possible to separately deploy the component aspects as well
as the composed one. Besides, the copied Basic Units are
slightly altered because the Instantiation Context of compo-
nent Basic Units is usually different in the composition.

The algorithm for composing Aspects uses the set of As-
pects ai∈{1..n} to be composed and a map defining how to
alter the Instantiation Contexts of the component Aspects’
Basic Units in the composition. This map associates a com-
ponent Aspect with the new Instantiation Context. The

295

algorithm creates a new Aspect, anew; for each ai it iter-
ates over ai.BasicUnits and from each such Basic Unit it
creates a copy and adds it to anew.BasicUnits. If the map
contains an entry for ai, in the copy all references to the
old Instantiation Context are replaced with a reference to
the new Instantiation Context associated in the map. Next,
the Composition Rules and Precedence Rules defined by the
component aspects are considered. Each such rule is copied
and added to the corresponding set of anew, referring now
to the copies of Basic Units in the composition.

In order to treat the ignores modifier, e.g., for A ignores B,
an additional input maps Aspects to scopes that should be
ignored, specified as Predicates (e.g., an Atomic Predicate
evaluating to true when the execution is in the control flow
of a basic unit in B). For each Basic Unit copied from a
component aspect, the map is used to look up whether a
scope is defined for the Aspect containing this Basic Unit.
If a scope that is to be ignored, say s, is defined for an aspect
(A above), the Predicate p of each Specialization of a Basic
Unit in A is replaced with a Predicate equivalent to p ∧ ¬s
in the copy.

Defining overriding or precedence between two Aspects in
a composition means to create Composition Rules or Prece-
dence Rules between the Aspects’s individual Basic Units.
Both algorithms build the cross product of both Basic Unit
sets, and define precedence and overriding pair-wise. To de-
clare overriding between two Basic Units one Composition
Rule is created with the overriding element being the sin-
gle element in the Present set and the overridden element
being the single element in the Forbidden set. The sets Ab-
sent and Required are empty and the property heal is set
to true. If an exception—defined by the keywords except,
noignore and nooverride in the previous sections—is specified
for a pair of basic units, rules for them are created according
to the exception’s semantics for this pair. The created rules
are added to the corresponding sets of anew.

6. RELATED WORK
In most aspect languages, the events are declared using a

descriptive (declarative) notation, like AspectJ pointcuts or
Compose* matching patterns, or even a logic notation, as
Prolog used by Compose* selector predicates. The problem
is that current languages do not allow gathering information
over time in these declarations, so aspect code has been used
to overcome the limitations.

Named and abstract pointcuts of AspectJ might seem to
provide a solution to the abstraction problem. However,
often several layers are needed to naturally express the ter-
minology appropriate for the aspect or event separately from
that of the underlying system. In that case abstract and con-
crete pointcuts are insufficiently expressive, since they can
either be entirely undefined if declared abstract, or must be
described using regular pointcut notation otherwise. They
are local to an aspect and also do not allow collecting infor-
mation over time. Java annotations and their incorporation
into AspectJ do facilitate giving “relevant” names to arbi-
trary collections of points in the code, and then referring to
those in pointcut definitions. However, they suffer from the
same problems as above, and require modifying the under-
lying program when new annotations are added.

In [21] the Eos language is proposed, with ”classpects“ to
unify classes and aspects. Join points are declared separately
from responses, using AspectJ-like declarative predicates to

expose information and identify points in code. Thus, even
though the static definition is separate, when information
must be accumulated to determine whether a complex event
has occurred, it appears in the code of a classpect rather
than in a join point binding.

In a similar vein, the JAsCo language [28] enforces a more
syntactic separation of the when and the what of an aspect.
The functionality, called a Hook, is always defined with an
abstract pointcut; in order to activate it, a Connector must
be implemented that concretizes the pointcut. JAsCo also
allows to define custom combination strategies for aspects.
In contrast to the work presented in this paper, it is not
possible to define Connectors at multiple abstraction layers
or events that accumulate runtime state programmatically.
The composition strategies are defined per shared join point,
instead of at the aspects level, and excluding aspects from
the scope of others they are composed with is not possible.

In [26], implicit invocation with implicit announcement
is investigated. The authors introduce the concept of join-
point types which encapsulate pointcuts and define an in-
terface of exposed values. This is similar to events in our
work. But, as the authors point out, this does not treat the
issue of scattering. Classes declare which join-point types
they exhibit—similarly to the way methods declare excep-
tions they may throw. Each join-point type is thus defined
locally for the class in which it might occur, and it seems
difficult to treat complex events that crosscut classes. Fur-
thermore, pointcuts cannot refer to join-point types which
makes it impossible to compose events other than along a
single-inheritance hierarchy.

Stateful aspects in JAsCo [29], tracematches [20] and trace-
checks [7] do treat a sequence of states that culminate in an
event, but emphasize pure detection, and do not support
decomposing events into layers at different levels of abstrac-
tion. Accumulating state information and context that can
be used in an aspect to respond to the detected event is par-
tially supported in these notations, but is still inadequate
for all needs. In contrast to those works, it is more powerful
to use code to accumulate and evaluate relevant informa-
tion rather than logical declarative constructs with limited
expressive power. Defining events imperatively may also be
more natural to programmers who otherwise also have to
be familiar with the particular logical formalism. In these
approaches event detectors and responses to detected events
are defined together and event detectors cannot be reused
with different responses or as part of other event detector
definitions. The same is true of the more abstract approach
in [9, 10] that allows accumulating information in an aspect
state. Tracecuts [30] fall in the same category of language
mechanisms but can be defined similarly to named pointcuts
in AspectJ. They can be reused with different responses and
in the definition of other tracecuts; but reuse is only possi-
ble within the defining syntactic unit. The above discussion
about limited expressiveness and being unnatural to pro-
grammers also applies to tracecuts.

E-Chaser [17] is an extension to Compose* to treat se-
quences of messages as an event and form a hierarchy of
events. The extensions proposed in this paper enhance the
modularity of E-Chaser by separating responses from the
declaration of an event, and by facilitating the composition
of filter modules.

The desirability of composing aspects is seen in early work
on a calculus of superimpositions [24, 25], relating aspects

296

to superimposition constructs developed for distributed sys-
tems. That work also shows some of the various ways in
which aspects can be composed.

Observer and spectative aspects [8, 13] somewhat resem-
ble events, but are not supported in syntax. In some ver-
sions, those kinds of aspects are allowed to output infor-
mation gathered or save it to global variables, thus differing
from pure event detectors. As described in the following sec-
tion, tools to identify these kinds of aspects can be adapted
to ensure that event declarations are legal.

The ideas of clearly separating event detection from re-
sponses, and defining events in a hierarchy based on lower-
level events is seen in the event-based development approach
[16, 12]. This is integrated with aspects in the HighspectJ
framework [19], but as a methodological framework not ex-
tending AspectJ. In that work, interfaces for event aspects
and for response aspects are defined, and a library of aspects
and methods provides facilities to encourage usage that fol-
lows the ideas of an event hierarchy. As noted in the Intro-
duction, the extensions here can be seen as making aspect
languages more appropriate for complex event systems.

7. PRELIMINARY EVALUATION
Although a full evaluation of the extensions in this paper

will need further investigation, some preliminary conclusions
can be drawn. The goals of the work have been to (1) present
language extensions for AO languages that completely sepa-
rate event detection from responses, and aid in forming com-
positions, (2) show the increased separation from code-level
operations, improved potential for modularity, and use of
terminology natural to the concern of each aspect or event,
(3) demonstrate the programming style the extensions facil-
itate, and (4) show how they can be effectively implemented
and used for static analysis. The language extensions and
their use referred to by our first three goals are discussed
in Sections 2 – 4, while an implementation is described in
Section 5. The degree to which our second and third goals
are achieved is further considered in case studies below. Our
fourth goal is discussed in terms of ease of implementation
including the syntactic support provided, and the implica-
tions for correctness in Sections 7.2 and 7.3.

7.1 Case studies

7.1.1 Software process guidance in AspectJ
As a first case study, a collection of aspects for software

process guidance from [19] and additional examples over the
Eclipse software development environment were rewritten
using the AspectJ version of the extensions presented here.
Unfortunately, as we have not yet implemented a compiler
for extended AspectJ, we presently cannot execute the re-
sults. The aspects deal with test-driven development, de-
tecting usability problems of user interfaces, and enforcing a
protocol for committing code to a source control repository.
Some of the results are seen in the software-process example
in Section 3.3. The low-level events directly connected to the
Eclipse environment were generally expressed as event de-
tector expressions using pointcut notation, while the aspects
that actually defined complex events became event detectors
expressed as code declarations based on other events.

In writing aspect code using the extensions, it became
clear that there is a trade-off between defining separate event
detectors, or defining more general ones differentiated by

the data values returned in the event parameters. For ex-
ample, it is a matter of taste whether there are separate
SuccessfulTest and FailedTest events that combine into a Tested

event, or just a Tested event with a parameter OK given a
value of true when the test passed, and false otherwise. In
our case study, a resolution similar to that seen in the ex-
amples was used, tending towards the first option above,
especially when the treatment of those events differs.

For the code integration example, four basic events were
defined, and six higher-level event declarations that only re-
fer to other events, and thus are separate from the code. For
the usability example, five basic events were defined, and
eight higher-level ones, while for test-driven development,
there are seven new basic events and six higher-level ones
(that also use previously defined basic events), in two lev-
els. That is, for an initial investigation of software-process
support we defined 36 events overall, 16 connected directly
to the code of the underlying system through pointcut-like
syntax, and 20 higher-level ones that use other events.

The response aspects in the case study correspond to
recording events in persistent logs, sending announcements
of violations to users and/or managers, preventing continua-
tion until a deviation is corrected, and, when feasible, using
an aspect to automatically correct a user deviation from a
desired practice. There are also aspects that combine the
several responses. In our case study we defined 10 such re-
sponses, seven of which do not refer directly to code of the
base system. Thus overall, 19 events or aspects are directly
linked to the base system, while 27 are not. Although many
parts of the Eclipse implementation have been stable over
multiple versions, the way in which a JUnit test is recognized
changed from JUnit version 3 to 4, and different version con-
trol systems have been added (e.g., CVS, SVN, GIT). Ad-
justing to these changes only requires adding or changing
basic events, and otherwise does not influence the collection
of events and aspects for software-process guidance.

Even though the original AspectJ code used for the case
study was based on a methodology that encouraged sepa-
rating events, the results using the syntactic extensions im-
proved the separation and reuse potential of the event de-
tectors, and defined new responses in aspects that combined
simpler ones. Of course, future work will involve refactoring
aspect systems not initially designed with a clean separa-
tion of events from responses, and needs to include a more
detailed comparison with other alternatives.

7.1.2 Runtime monitoring using Compose*
The code fragments involving runtime verification in Sec-

tion 4.4 represent a re-implementation—again, this is a dry
run because we have not yet implemented a compiler for ex-
tended Compose*—of a much more extensive runtime verifi-
cation module in Compose*, using our extension. Since the
current version of Compose* does not support the definition
of events nor the separation and composition of events and
responses, in that work ordinary filter types were used to
define monitors and to implement the correlated monitors
and recovery strategies in one monolithic filter module. An
implementation of our example in the current Compose* is
shown in the listing below. Here, the filter module FileAccess

groups four filters, notAuthenticated, protocolViolation, logger

and prevention, which are executed in sequence. The data
fields authorizationResult and protocolResult are defined to main-
tain the result of monitoring; and are passed to the filters

297

notAuthenticated and protocolViolation. The recovery filters
logger and prevention check the value of these data fields to
infer whether the properties are violated.

1 filtermodule FileAccesses {
2 internals
3 authorizationResult : java.lang.Boolean;
4 protocolResult : java.lang.Boolean;
5 conditions
6 authenticated: User.isAuthenticated();
7 inputfilters
8 notAuthenticated:BooleanDetectorFilter =
9 (!authenticated && selector == [∗.∗]) {

10 filter.output = authorizationResult
11 };
12

13 protocolViolation:RegularExpressionViolation =
14 (selector == [’read’,’write’,’open’,’close’]) {
15 filter.predicate =
16 ”(open (read | write)∗ close)∗”;
17 filter.output = protocolResult;
18 };
19 logger:LogFilter =
20 (!(authorizationResult && protocolResult)
21 && selector == [∗.∗]){
22 filter.info = inner.name
23 };
24 prevention:PreventFilter =
25 (!(authorizationResult && protocolResult)
26 && selector == [∗.∗])
27 }

Such an implementation of monitors and recovery strate-
gies has several disadvantages compared to one using our
extensions. First, there is no guarantee that monitors do
not have external side-effects. Second, there is a fixed com-
position of monitors and recovery strategies, therefore it is
not possible to reuse monitors in other contexts. Third, we
are forced to keep the results of filters in data fields accessible
to all filters in the filter module. Thus no information hid-
ing is possible in the composition of monitors and recovery
strategies. Fourth, there is no linguistic support for compos-
ing monitors to form more coarse-grained monitors. Finally,
as the number of monitors and recovery strategies increases,
the readability of a monolithic filter module decreases.

A complex program usually has several correlated proper-
ties to be verified, and properties may have different levels
of granularity. For example, one may want to verify the us-
age protocols at the level of individual classes, components,
processes, etc. Accordingly, several recovery actions may
also be defined to heal the program. A complex program
also frequently evolves over the time, and consequently its
properties to be verified, monitors and recovery strategies
must be adapted with the changes. Therefore to ease the
use of runtime verification for developers, it must be pos-
sible for example to add or remove monitors, to compose a
coarse-grained monitor from fine-grained monitors, to add or
remove recovery strategies and connect them with monitors,
etc.

In the example presented in the extended Compose* syn-
tax, we have separated the verification and recovery task
into six filter modules as opposed to just one filter module
in the plain Compose* solution. Of the six filter modules,
only two refer to code-level messages. The remaining four
are higher-level filter modules.

7.2 Implementation and syntactic support
The particular extensions for AspectJ and for Compose*

demonstrate that the ideas can be incorporated into differ-
ent aspect languages in a way that conforms with the exist-
ing constructs and style of each language. The design of an
implementation in ALIA4J in Section 5 shows that the ex-
tensions are compatible with existing implementations, and
there is no indication that they would significantly increase
the translation or runtime overhead of an AOP language to
which they are added. As noted, an optimizer can deter-
mine which events are actually used (directly or indirectly)
in an aspect that responds by changing the system or the
environment, and detect only those events. The optimizer
could also apply in-lining and other compilation techniques
when appropriate.

Moreover, there are existing tools to detect spectators and
observers [1, 8, 22, 31] that can be adapted to validate that
event detectors are free of external side-effects. These are
all based on data-flow to determine that the only assign-
ments in relevant code are to local variables or parameters.
Difficulties in such analyses arise due to aliasing, exception
handling, and system libraries. However, the methods in
system libraries can be analyzed in advance to determine
whether they are side-effect-free, and partial solutions exist
for the other problems. In case studies of the cited works,
over 98% of the spectative aspects are accurately detected.
Using these techniques for event validation should provide
similar results, and aid in detecting improper event decla-
rations as part of compilation. A variant of such tools can
announce an error for provably illegal event declarations and
let pass those provably free of external side-effects. For event
declarations for which it is unable to show either way, a
warning can be emitted.

7.3 Implications for correctness
Although not the subject of this paper, the extensions

facilitate easier reasoning about and verification of aspect
systems. Because event declarations are required to be free
of external side-effects, in themselves they have no global in-
fluence. The specification of an event detector should only
designate that the event is detected at desired join points
and only at those points, and that the information provided
in the parameters reflects the desired relation with the exe-
cution of the underlying program. These properties can be
expressed in temporal logic. Only the responses in aspects
need to be analyzed to show that their effect on the overall
system is as desired, assuming that the events and other as-
pects each satisfy their own specifications. This means that
each verification task is relatively small, and that assume-
guarantee reasoning can be used to show an event or aspect
correct relative to the correctness of its components. Fu-
ture work will explore such modular verification techniques
in depth.

8. CONCLUSION
This paper has presented proposals to completely sepa-

rate responses from event detection and exposing needed
context, and to define compositions of events and aspects
that can form a hierarchy of terminology and actions natural
to each concern. Although the changes to aspect languages
have been kept to a necessary minimum, the programming
style that the changes enable and encourage is significantly
different from previous use. In our experience so far, the

298

extensions indeed do lead to improved modularity by easily
allowing differing responses to the same events, increasing
the potential for reuse, and alleviating the fragile pointcut
problem by making most event detectors and aspects inde-
pendent of the code in any particular system to which they
can be woven.

Perhaps most importantly, the extensions allow a more
natural expression of programmer intentions. These exten-
sions should be especially valuable in building libraries or
frameworks of reusable aspects and event detectors both for
classic applications of aspects and for new areas such as
cloud computing, mobile devices, and web-based comput-
ing.

9. ACKNOWLEDGMENTS
Partial support for this work was provided by NWO grant

040.11.140.

10. REFERENCES
[1] Y. Alperin-Tsimerman and S. Katz. Dataflow analysis

for properties of aspect systems. In 5th Haifa
Verification Conference (HVC), LNCS, 2009.

[2] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann.
Overview of CaesarJ. In TAOSD, LNCS, pages
135–173. 2006.

[3] L. M. J. Bergmans and M. Akşit. Principles and
design rationale of composition filters. In R. Filman,
T. Elrad, S. Clarke, and M. Akşit, editors,
Aspect-Oriented Software Development, pages 63–96.
2004.

[4] C. Bockisch. An Efficient and Flexible Implementation
of Aspect-Oriented Languages. PhD thesis, Technische
Universität Darmstadt, 2009.

[5] C. Bockisch and M. Mezini. A flexible architecture for
pointcut-advice language implementations. In VMIL,
2007.

[6] C. Bockisch, A. Sewe, M. Mezini, A. de Roo,
W. Havinga, L. Bergmans, and K. de Schutter.
Modeling of representative AO languages on top of the
reference model. Technical Report
AOSD-Europe-TUD-9, Technische Universität
Darmstadt, 2008.

[7] E. Bodden and V. Stolz. Tracechecks: Defining
semantic interfaces with temporal logic. In W. Löwe
and M. Südholt, editors, Software Composition,
LNCS, pages 147–162. 2006.

[8] C. Clifton and G. Leavens. Observers and assistants: a
proposal for modular aspect-oriented reasoning (also,
revised as spectators and assistants). In FOAL, 2002.

[9] R. Douence, P. Fradet, and M. Sudholt. Composition,
reuse, and interaction analysis of stateful aspects. In
AOSD, pages 141–150, 2004.

[10] R. Douence, P. Fradet, and M. Südholt. Trace-based
aspects. In R. E. Filman, T. Elrad, S. Clarke, and
M. Akşit, editors, Aspect-Oriented Software
Development, pages 201–217. Addison-Wesley, Boston,
2005.

[11] S. Ducasse, O. Nierstrasz, N. Schärli, and A. P. Black.
Traits: A mechanism for fine-grained reuse. TOPLAS,
2006.

[12] O. Etzion and P. Niblett. Event Processing in Action.
Manning Press, 2010.

[13] S. Katz. Aspect categories and classes of temporal
properties. In TAOSD, LNCS, pages 106–134. 2006.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In ECOOP, pages 327–353, 2001.

[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In ECOOP, pages
220–242, 1997.

[16] D. C. Luckham. The Power of Events: An
Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Boston, USA, 2001.

[17] S. Malakuti, C. Bockisch, and M. Aksit. Applying the
composition filter model for runtime verification of
multiple-language software. In ISSRE, pages 31–40,
2009.

[18] O. Mishali and S. Katz. Using aspects to support the
software process: XP over eclipse. In AOSD, pages
169–179, 2006.

[19] O. Mishali and S. Katz. The HighspectJ framework.
In ACP4IS, pages 19–24, 2009.

[20] C. A. Pavel, C. Allan, P. Avgustinov, A. S.
Christensen, L. Hendren, S. Kuzins, O. D. Moor,
D. Sereni, G. Sittampalam, and J. Tibble. Adding
trace matching with free variables to aspectj. In
OOPSLA, pages 345–364, 2005.

[21] H. Rajan and K. Sullivan. Unifying aspect and
object-oriented design. TOSEM, pages 3:1–3:41, 2008.

[22] M. Rinard, A. Salcianu, and S. Bugrara. A
classification system and analysis for aspect-oriented
programs. In FSE, pages 147–158, 2004.

[23] A. Sewe, C. Bockisch, and M. Mezini.
Redundancy-free residual dispatch. In Proceedings of
FOAL, 2008.

[24] M. Sihman and S. Katz. A calculus of
superimpositions for distributed systems. In AOSD,
pages 28–41, 2002.

[25] M. Sihman and S. Katz. Superimposition and
aspect-oriented programming. BCS Computer Journal,
46(5):529–541, 2003.

[26] F. Steimann, T. Pawlitzki, S. Apel, and C. Kastner.
Types and modularity for implicit invocation with
implicit announcement. TOSEM, 20(1), 2010.

[27] M. Störzer and C. Koppen. Pcdiff: Attacking the
fragile pointcut problem, abstract. In EIWAS, 2004.

[28] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo:
an aspect-oriented approach tailored for component
based software development. In AOSD, pages 21–29,
2003.

[29] W. Vanderperren, D. Suvée, M. A. Cibrán, and
B. De Fraine. Stateful aspects in jasco. In
T. Gschwind, U. Aßmann, and O. Nierstrasz, editors,
Software Composition, LNCS, pages 167–181. 2005.

[30] R. Walker and K. Viggers. Implementing protocols via
declarative event patterns. In FSE, pages 159–169,
2004.

[31] N. Weston, F. Taiani, and A. Rashid. Interaction
analysis for fault-tolerance in aspect-oriented
programming. In MeMoT, pages 95–102, 2007.

299

