Form Methods Syst Des (2010) 37: 61-92
DOI 10.1007/s10703-010-0101-1

MAVEN: modular aspect verification and interference
analysis

Max Goldman - Emilia Katz - Shmuel Katz

Received: 22 November 2009 / Accepted: 10 October 2010 / Published online: 3 November 2010
© Springer Science+Business Media, LLC 2010

Abstract Aspects are program modules that include descriptions of key events (called join-
points) and code segments (called advice) to be executed at those key events when the aspect
is bound (woven) to an underlying system. The MAVEN tool verifies the correctness of
an aspect relative to its specification, independently of any specific underlying system to
which it may be woven, and also allows establishing noninterference among aspects, or
detecting potential interference. The specification includes assumptions about properties of
the underlying system, and guaranteed properties of any system after the aspect is woven into
it. The approach is based on model checking of a state machine constructed using the linear
temporal logic (LTL) description of the assumptions, a description of the join-points, and the
state machine of the aspect advice. The tableau of the LTL assumption is used in a unique
way, as a representative of any underlying system satisfying the assumptions. This is the first
technique for once-and-for-all verification of an aspect relative to its specification, thereby
increasing the modularity of proofs for systems with aspects. The individual correctness
proofs along with proofs of interference freedom are appropriate for a library of reusable
aspects, when multiple aspects are to be woven to a system.

Keywords Verification - Aspects - Modularity - Model-checking - Interference - Detection

M. Goldman
Computer Science Department, MIT, Cambridge, MA, USA
e-mail: maxg@MIT.EDU

E. Katz (X)) - S. Katz
Computer Science Department, Technion, Haifa, Israel
e-mail: emika@cs.technion.ac.il

S. Katz
e-mail: katz@cs.technion.ac.il

@ Springer


mailto:maxg@MIT.EDU
mailto:emika@cs.technion.ac.il
mailto:katz@cs.technion.ac.il

62 Form Methods Syst Des (2010) 37: 61-92

1 Introduction
1.1 Aspect-oriented programming

The aspect-oriented approach to software development is one in which concerns that cut
across many parts of the system are encapsulated in separate modules called aspects. The
approach was first presented in the Aspect] [21] extension of Java, and has been generalized
to a variety of languages and aspect-oriented software development techniques (see, for
example, [11]). When a concern such as security or logging is encapsulated in an aspect, this
aspect contains both the code associated with the concern, called advice, and a description of
when this advice should run, called a pointcut descriptor. The pointcut descriptor identifies
those points in the execution of a program at which the advice should be invoked, called join-
points. The combination of some base program with an aspect (or in general, a collection of
aspects), is termed an augmented program.

Aspects are of particular interest as a software construct because they are not activated by
explicit code in the base program and the pointcuts that govern the execution of their advice
are evaluated dynamically. When a pointcut identifies join-points, these join-points are not
usually only static locations in the code; rather, in the most popular and expressive join-point
models used by aspect-oriented programming languages, join-points are well-defined points
during the execution of a program. Depending on the runtime context of a particular point,
such as the methods on the program’s stack, or the values currently in certain data fields,
the same static code location might match a pointcut at one time, but fail to match it at
another. To give the programmer (both read and write) access to the dynamically changing
data, a pointcut may also expose program variables to the advice, extending their scope to
the aspect.

1.2 Modular aspect verification

In this work we are concerned with generic formal verification of aspects relative to a specifi-
cation, and with potential interference among aspects. The specification of an aspect consists
of assumptions about any base program to which the aspect can reasonably be woven, and
desired properties intended to hold for the augmented program (this terminology is applied
to aspects in [28]). We view both base programs and aspect code as nondeterministic finite
state machines, in which computations are infinite sequences of states within the machine.
For both assumptions and desired properties to be verified we consider formulas in linear
temporal logic (LTL) because, as will be shown, the automata commonly used in model
checking such properties play an essential role in our approach.

Clearly, given a base program, a collection of aspects with their pointcut descriptors
and advice, and a system for weaving together these components to produce a stand-alone
augmented program, we can verify properties of this augmented system using the usual
model checking techniques. Such weaving involves adding edges from join-point states of
the base program to the initial states of the advice, and from the states at the end of an
advice segment to states back in the base program. It would be preferable, however, if we
could employ a modular technique in which the aspect can be considered separately from
the base program. Instead of examining a particular augmented program, using a generic
model for each individual aspect will allow us to:

— obtain verification results that hold for a particular aspect with any base program from
some class of programs, rather than for only one particular base program;

@ Springer



Form Methods Syst Des (2010) 37: 61-92 63

— use the results to reason about the application of aspects to base programs with multiple
evolving state machines describing changing configurations during execution, or to other
systems not amenable to model checking; and

— avoid model checking augmented systems, which may be significantly larger than either
their base systems or aspects, and whose unknown behavior may resist abstraction.

The second point above relates to object-oriented programs that dynamically create new
instances of classes (objects) with associated state machine components. Thus, the system
representation as a state machine changes, with new components and method calls to objects
added or removed. Often, the assumption of an aspect about the key properties of those base
state machines to which it may be woven can indeed be shown to hold for every possible
machine that corresponds to an object configuration of a program. For example, it may
involve a so-called class invariant, provable by reasoning directly on class declarations, as
in [1]. More details on the connections between code-based aspects (as in Aspect]) and the
state machine versions are discussed in Sect. 7.

This problem of creating a single generic model that can represent any possible aug-
mented program for an aspect woven over some class of base programs is especially dif-
ficult because of the aspect-oriented notion of obliviousness: base programs are generally
unaware of aspects advising them, and have no control over when or how they are advised.
There are no explicit markers for the transfer of control from base to advice code, nor are
there guarantees about if or where advice will return control to the base program.

1.3 Results

In this paper we provide formal model checking techniques to establish both that each aspect
individually is correct when woven alone, and also to consider possible interference among
multiple aspects woven to the same underlying system.

For individual aspects, we show, under some relatively weak restrictions given later in
the paper, how to verify once-and-for-all that for any base state machine satisfying the as-
sumptions of an aspect, and for a weaving that adds (only) the aspect advice as indicated
in the join-point description, the resulting augmented state machine is guaranteed to satisfy
the desired properties given in the specification. Once-and-for-all verification here means
that there is no need to repeat the verification process each time we will actually want to
weave our aspect into a base system. The verification algorithm is implemented in a pro-
totype called MAVEN. A single generic state machine is constructed from the tableau of
the assumption, the pointcut descriptor, and the advice state machine, and verified for the
desired properties. Then, when a particular base program is to be woven with the aspect,
it is sufficient to establish that the base state machine satisfies the assumptions. Thus the
entire augmented program never has to be model checked, achieving true modularity and
genericity in the proof.

Once the individual aspects are known to be correct relative to their specifications, a sec-
ond verification stage determines whether a collection of aspects can semantically interfere
with each other. This means that one causes another to violate its specification when both
are woven, even when each is individually correct relative to its specification. This approach
is especially appropriate for aspects intended to be reused over many base programs, such
as those in libraries or middleware components. Again, proof tasks are defined and automat-
ically checked using MAVEN.

LTL model checking is based on creating a tableau state machine automaton that accepts
exactly those computations that satisfy the property to be verified. Usually, the negation
of this machine is then composed as a cross-product with the model to be checked. Here

@ Springer



64 Form Methods Syst Des (2010) 37: 61-92

we use the tableau of the assumption in a unique way, as the basis of the generic model
to be checked for the desired property. It represents any base machine satisfying the as-
sumption, because the execution sequences of these base programs can be abstracted by
sequences in the tableau. The paper treats specifications given in LTL precisely because
the automata/tableau associated with verifying such properties can be used to represent the
desired family of base programs.

The aspects treated are assumed to be weakly invasive, as defined in [18] and discussed
in Sect. 2.4. This means that when advice has completed executing, the system continues
from a state that was already reachable in the original base program (perhaps for different
inputs or actions of the environment). Many aspects fall into this category, including specta-
tive aspects that never modify the state of the base system (logging is a good example), and
regulative aspects that only restrict the reachable state space (for example, aspects imple-
menting security checks). Also weakly invasive would be an aspect to enforce transactional
requirements, which might roll back a series of changes so that the system returns to the
state it was in before they were made. Even a “discount policy” aspect that reduces the price
on certain items in a retail system is weakly invasive, since the original price given as input
could have been the discounted one. There exists an extension of our method to the gen-
eral case (treating strongly invasive aspects as well), but adding this possibility complicates
the treatment, and as there are many aspects of the weakly invasive category, and an easy
syntactic check can be performed outside our system to check whether an aspect is weakly
invasive, we chose to relate to weakly invasive aspects only in this paper.

Additionally, we assume that any executions of an augmented program that infinitely
often include states resulting from aspect advice will be fair (i.e., comprise a fairness set:
see clarification in Sect. 2.1), and thus must be considered for correctness purposes. The
version here also only treats some cases of join-points influenced by advice.

This paper extends [12] and [17]. Proofs omitted in both papers appear here, and the
general theoretic discussion there is extended, formalized and exemplified in the current
paper. We also present a new version of the MAVEN tool treating aspects with local memory
and extend the library of aspects verified and checked for interference freedom.

In the following section, needed terms and constructs are defined. Section 3 presents the
algorithm to model check an individual aspect relative to its specification, and gives a proof
of soundness in the weakly invasive aspect case. Section 4 shows how to detect potential
semantic interference among aspects, using specially constructed models. This section also
uses an abstract example to illustrate the approach. The MAVEN implementation is described
in Sect. 5, as is its use both for showing correctness of an individual aspect and detecting
any interference among a collection of aspects. Section 6 presents parts of a small aspect
library. Section 7 details works related to the results here, and is followed by the conclusion
in Sect. 8.

2 Definitions

2.1 LTL Tableaux

The specifications of aspects we consider are written in Linear Temporal Logic [24]. This
is a logic over sequences of states that correspond to possible computations. It enables us
to express both properties of a single computation and statements about the entire set of

computations of a given system. The temporal modalities we use to define properties of a
single computation are:

@ Springer



Form Methods Syst Des (2010) 37: 61-92 65

— “G” (meaning, “Globally”, from now on). Given a computation 7 of a system S, a state
s in it and a temporal logic formula ¢ (built from predicates over state variables of S,
and temporal logic operators),we say that the temporal logic formula Gg holds at s in &
(denoted by 7, s =5 Go) if ¢ holds at every state of 7 from s and on, including s itself.
We also say that 7 satisfies Go(r =5 Go) if Go holds at the initial state of 7.

— “F” (meaning, “Finally”, eventually). Given a computation 7 of a system S, a state s in
it and a temporal logic formula ¢, we say that the temporal logic formula Fg holds at
s in  (denoted by 7, s =g Fo) if some state of 7 in which ¢ holds can be eventually
reached from s (notice that it can be the state s itself). As before, we say that 7 satisfies
Fo ( =5 Fo) if Fp holds at the initial state of 7.

— “X” (meaning, “neXt”, in the next state). Given a computation 7t of a system S, a state s
in it and a temporal logic formula ¢, we say that the temporal logic formula X¢ holds at
s in 7w (denoted by 7, s =5 X¢) if ¢ holds at the state s; of 7, where s is the next state
after s in . We say that  satisfies Xg (7 =5 X¢) if X¢ holds at the initial state of 7.
A property described by X is called a next-state property.

— “U” (meaning, “Until”). Given a computation 7 of a system S, a state s in it and two
temporal logic formulas, ¢ and ¥/, we say that the temporal logic formula ¢U holds at s
in 7 if there exists a state s; that appears after s in 7 such that v holds in s, and ¢ holds
at every state between s and s; (including s).

We refer to systems given as a tuple S = (Stg, Sg, Rg, Lg, Fs), where Sty is a set of all the
states in S, SOS is the set of the initial states of S, Rg is the transition relation, Lg is the
labeling function, and Fy is the set of fair state sets. A computation 7 of S is a fair path in
the state-transition graph of S, where a fair path is a path that visits each set in Fs infinitely
many times.

We say that a computation 7 of a system S satisfies an LTL formula f (denoted by
s f)if m, 50 E=s f, where sq is the initial state of 7. A system S is said to satisfy an
LTL formula f (S = f) if every computation of S satisfies f.

Intuitively, the tableau of an LTL formula f is a state machine whose fair infinite paths
are exactly all those paths which satisfy the formula f. This intuition will be realized for-
mally in Theorem 1 below.

We define Ty, the tableau for LTL path formula f as given in the chapter of [7] on
“Symbolic LTL Model Checking”. We denote Ty = (Sr, SOT, Ry, Ly, Fr). If APy is the set
of atomic propositions in f, then Ly : S — P(APy)—that is, the labels of the states in the
tableau will include sets of the atomic propositions appearing in f. A state in any machine
is given a particular label if and only if that atomic proposition is true in that state. We also
need:

Definition 1 For path 7, let label () be the sequence of labels (subsets of AP) of the
states of 7. For such a sequence [ = Iy, [, ... and set Q, let I|p = mg, m, ... where for
eachi>0,m; =N Q.

Theorem 1 (from [7], 6.7, Theorems 4 & 5) Given Ty, for any Kripke structure M, for all
fair paths 7' in M, if ©' =y f then there exists a fair path 7 in Ty such that & starts in SOT
and label(n/)lApf =label (7).

That is, for any possible computation of M satisfying formula f, there is a path in the
tableau of f which matches the labels within A P, along the states of that computation.

@ Springer



66 Form Methods Syst Des (2010) 37: 61-92

In the algorithm of Sect. 3, we restrict the tableau to its reachable component. Such a
restriction does not affect the result of this theorem, since all reachable paths are preserved,
but, as will be shown, is necessary in order to achieve useful results.

2.2 Aspects

2.2.1 Advice

An aspect machine A = (S, S&, S;‘;,, R4, L4) over atomic propositions A P, is defined as
usual for a state machine with no fairness constraint, with the following addition:

A
ret> S

Definition 2 S4

ret

has no outgoing edges.

is the set of return states of A, where S;Zt C S4 and for any state s € S

The above described state machine can be constructed either at the design stage, where a
model of the aspect is built from the user requirements, or created from the code of the aspect
(e.g., by tools like Bandera [14]). The atomic propositions A P, include all the necessary
information about the state of the base system, at the appropriate level of abstraction.

2.2.2 Pointcuts

Recall that a pointcut identifies the states at which an aspect’s advice should be activated,
and can include conditions on the present state and execution history. We do not give a pre-
scriptive definition for pointcut descriptors; in practice they might take a number of forms,
e.g., using variants of regular expressions, as in [27]. Another choice for describing point-
cuts might be LTL path formulas containing only past temporal operators. For example,
the descriptor p; = a A Yb A YYb would match sequences ending with a state where a is
true, preceded by b, preceded by another b (operator Y is the past analogue of X). However
expressed, we require that descriptors operate as follows:

Definition 3 Given a pointcut descriptor p over atomic propositions AP and a finite se-
quence [ of labels (subsets of AP), we can ask whether or not there exists a suffix of /
matched by p.

We define [ = p to mean that finite label sequence / is matched by pointcut descriptor p
in this way.

With appropriate choice of the atomic predicates, past-LTL formulas are expressive
enough to describe any Aspect] pointcut. Note that the set A P may contain predicates mean-
ing the computation is now just before, or just after, some event, thus enabling us to model
before and after advice of Aspect], where the event of interest is usually a method call.
Around advice can also be modeled as a combination of a before and an after advice, and in
case a method call is to be replaced (in Aspect] terms, no proceed statement is executed),
the before part of the advice will be responsible for the appropriate behavior (and the after
part will not be executed, as its join-point will not be reached).

2.2.3 Specifications

In addition to its advice, in state machine A, and pointcut, described by p, an aspect has two
pieces of formal specification:

@ Springer



Form Methods Syst Des (2010) 37: 61-92 67

— Formula P, expresses the assumptions made by the aspect about any base machine to
which it may reasonably be woven. This P, is thus a requirement to be met by any such
machine.

— Formula R, expresses the desired result to be satisfied by any augmented machine built by
weaving this aspect with a conforming base machine. In other words, R, is the guarantee
of the aspect.

The form of the specification is an instance of the assume-guarantee paradigm but gener-
alized to relate to global properties of the system. The assumption of an aspect can include
information on what is expected to be true at join-points, global invariants of the underly-
ing system, or assumed properties of instances of classes or variables that may be bound
to various parameters of the aspect when it is woven. The result assertion can include both
new properties added by the aspect, and those properties of the basic system that are to be
maintained in a system augmented with the aspect. Both parts of aspect specification are
expressed in linear temporal logic. Such a specification captures the intension of the aspect.

Definition 4 An aspect is correct with respect to its assume-guarantee specification if,
whenever it is combined (by itself) with a system that satisfies the assumption, the result
will satisfy the guarantee.

With some abuse of notation we will denote by A the aspect as a whole, and not only its
advice machine.

2.3 Weaving

Weaving is the process of combining a base machine with some aspect according to a par-
ticular pointcut descriptor; the result is an augmented machine that includes the advice of
the aspect.

The weaving algorithm has the following inputs:

— advice machine A = (S4, S4, S,Aet,
— pointcut p over AP, and
— base machine B = (Sg, SE, Rp, Ly, Fp) over APy D AP.

Ry, Ly) over AP, D AP,

And it produces as output:
— augmented machine B + A = (Sgia, Sg **, Rpra, Lpia, Fpia)-

The set AP can be thought of as the ‘visible’ labels of B with which the aspect is con-
cerned; labels local to the aspect are not included.

The weaving is performed in two steps. First we construct from the base machine B a
new state machine B” which is pointcut-ready for p, wherein each state either definitely is
or is not matched by p. Then we use B” and A to build the final augmented machine B + A.

2.3.1 Constructing a pointcut-ready machine

A pointcut-ready machine B” = (Sg», S(fp, Rgo, Lo, Fpo) is a machine in which unwind-

ing of certain paths has been performed, so that we can separate paths which match pointcut

descriptor p from those that do not. The pointcut-ready machine contains states with a new

label, pointcut, that indicates exactly those states where the descriptor has been matched.
This machine must meet the following requirements:

@ Springer



68 Form Methods Syst Des (2010) 37: 61-92

Fig.1 Constructing a M
pointcut-ready machine M for

M P
the given M and LTL past
formula pointcut descriptor
p=aAYbAYYb '

— Spr 28
— Lpyp is a function from Sg, to P(A Pg U {pointcut})
— For all finite-length paths w = sg,...,8 in B” such that sy € Sgp, we have

label(m) = p < s = pointcut.
— For all infinite sequences of labels [ = (P(A Pg))®, there is a fair path 7z, in B” where
label(tpr)|ap, =1 if and only if there is a fair path 75 in B where label(rp) =1.

Since B and B’ have the same paths (over A P, ignoring the added pointcut label), they
must satisfy exactly the same LTL formulas over A P. The desired separation of the paths
matching p from all the others in B” is achieved by state splitting, which leads to path
unwinding of the relevant paths.

Figure 1 shows a simple example of this construction. Note that in state diagrams, the ab-
sence of an atomic proposition indicates that the proposition does not hold, not that the value
is unknown or irrelevant. This is in contrast to a formula, where unmentioned propositions
are not restricted.

Note that for a pointcut descriptor that examines only the current state, the splitting and
unwinding is unnecessary, and pointcut can be added directly to the states in which the
pointcut descriptor is matched. In the worst case, the point-ready state machine might grow
by two to the nesting depth of past temporal operators in a past-LTL description of the
pointcut.

2.3.2 Constructing an augmented machine

We construct the components of augmented machine B + A = (Sp44, S(f +A, Rpia,Lpia,
Fg. 4) as follows:

— Spta=Spr USy

_ SB+A _ SB/’
0o =20
(s,t) € Rgr A s [~ pointcut if s, € Sgr
(S,[)ERA ifS,[ESA
— (s,t) € Rpya & { s Epointcut At € Sé‘
A Lgo(s)|lap =La(t)|ap if s € Sgo, t € Sy

5 €SA ANLs(S) ap=Lpo(t)|ap ifseSy, t€Sp

Note that this relationship is ‘if and only if.” In words, the path relation contains precisely all
the edges from the pointcut-ready base machine B” and from aspect machine A, except that
pointcut states in B” have edges only to matching start states in A, and aspect return states
have edges to all matching base states. Note that the program counter is part of the base
system state, which enables us to model the return of the aspect to the appropriate place in
the code of the base system. Thus the typical situations where an aspect returns to the point
in the code where it was activated, but with some possibly different values for variables, can

@ Springer



Form Methods Syst Des (2010) 37: 61-92 69

be correctly modeled by using the program counter and a variable indicating whether the
aspect has already been applied.

_ LBp(S) ifs e SBP
~ LAl =11 () ifse S,
- Fpia={FUSs | F; € Fpo}

From the definition of F. 4, a path is fair in B + A if it either satisfies the original fairness
constraint of the pointcut-ready machine, or if it visits some aspect state infinitely many
times. A weaving is considered successful if every reachable node in Sz, 4 has a successor
according to R 4.

2.4 Weakly invasive aspects

As mentioned above, we show our result for the broad class of aspects which, when they re-
turn from advice, do so to a reachable state in the base machine. Without this restriction, the
aspect may return to unreachable parts of the base machine whose behavior is not bound by
assumption formula P. In this case, the augmented system contains portions with unknown
behavior, and is difficult to reason about in a modular way.

Definition 5 An aspect A with pointcut p is said to be weakly invasive for a base machine
B if, for all states in Sp, that are reachable in B + A along a fair path are also reachable in
B” along a fair path.

In particular, this means that all states to which the aspect returns are reachable in the
pointcut-ready base machine. This could of course be checked directly, but would require
construction of the augmented machine—precisely the operation we would like to avoid.
In many cases (see [18]), the aspect can be shown weakly invasive for any base machine
satisfying its assumption P, by using local model checking, additional information (our
reasoning in the discount price example from Sect. 1.3 uses such information), or static
analysis (both spectative and regulative aspects can be identified in this way).

2.5 Interference among aspects

Given a library of reusable aspects, each of which is correct w.r.t. its assume-guarantee
specification, it is important to check that the aspects will still function properly when woven
all together into the same base system.

Definition 6 Given a set of correct aspects, .4, we say that A is interference-free if for
any subset {A,..., A,} € A the following holds: Whenever Ay, ..., A, are woven in any
order into a base system that satisfies all the assumptions of the aspects (P, ..., P,), the
augmented system obtained after this weaving satisfies the guarantees of all the aspects in
the subset (Ry, ..., R,).

Thus if a library of individually correct aspects is proven interference-free, any subset
of aspects from this library can be chosen to be added to a given base system, and the aug-
mented system will function properly provided the base system satisfies the assumptions
of all the chosen aspects. Moreover, we can decide to add or remove aspects from the sys-
tem later on, in any order needed during the evolution of our system, and the interference
freedom will guarantee proper behavior of the resulting system. Note that some aspects can
change the values of variables used by other aspects from the library even if they do not
interfere, as long as the correctness of the specification is unchanged.

@ Springer



70 Form Methods Syst Des (2010) 37: 61-92

Remark We demand that the base system into which we would like to weave our aspects
satisfies the assumptions of all the aspects in the library, whereas in practice there might be a
situation when application of aspect A is possible and desired only after some other aspects,
e.g., B and C, have been added to the base system. In such a case we might say that there is
a relationship of cooperation between A, B and C, rather than interference. Our method can
be easily extended to treat cooperation as well. However, there are many cases when aspects
do not depend on the presence of each other in the system, and we concentrate on them in
this paper.

2.6 Verification process

Given a library of reusable aspects (with their assume-guarantee specifications), our goal is
twofold:

— Verify that each of the aspects in the library is correct. (See algorithm in Sect. 3.)
— Establish the relationship between the aspects in the library: prove interference freedom,
or detect interference among some of the aspects. (The algorithm appears in Sect. 4.)

The second part of the verification process is performed incrementally, by adding the aspects
one by one to the “verified subset” of the library, until all the aspects are included.
The MAVEN tool, described in Sect. 5, is used to automate both algorithms.

3 Verifying aspect correctness

The modular verification algorithm builds a tableau from base assumption P, and weaves
A with this tableau according to pointcut descriptor p, then performs model checking on the
augmented tableau to verify desired result R 4.

Algorithm
Given:

— set of atomic propositions AP;

— aspect machine A over AP, 2 AP and pointcut descriptor p over AP;
— assumption P4 for base systems, an LTL formula over AP 4; and

— desired result R4 for augmented systems, an LTL formula over AP,.

Perform the following steps:

0. Forall a € AP, if P4 does not include a, augment P, with a clause of the form - - - A (a =
a), so that P4 contains every a € AP, without altering its meaning.

1. Construct Tp,, the tableau for P,. Since P4 contains every AP, the result of Theorem 1
will hold when all labels in AP are considered.

2. Restrict Tp, to only those states reachable via a fair path.

3. Weave A into Tp, according to p, obtaining 7p, + A.

4. Check the system Tp, + A for deadlock states. If none exists, continue to the next step.
Otherwise, report the deadlock state found.

5. Perform model checking in the usual way to determine if 7p, + A = Ry4.

Note: The check in step 4 is optional, and can be used as an additional indication of
possible non-weakly-invasiveness of the aspect. A deadlock state is reachable in Tp, + A

@ Springer



Form Methods Syst Des (2010) 37: 61-92 71

only in some return state of aspect A, because there are no deadlocks in Tp,, by construction.
The meaning of such a deadlock is that A is not weakly invasive for every base system
satisfying Pj.

The above algorithm gives us a sound proof method: whenever the model check of the
constructed augmented tableau (in step 5 above) succeeds, then for any base system sat-
isfying P4, applying aspect A according to pointcut descriptor p will yield an augmented
system satisfying R 4. This is expressed below:

Theorem 2 Given AP, Ps, Ry, and A as defined, if Tp, + A = Ry, then for any base
program M over a superset of AP such that aspect A is weakly invasive for M, if M = P,
then M + A= Ry.

As mentioned in Sect. 1, here we assume that A has been shown weakly invasive for M.

The proof of Theorem 2 relies on the definitions and lemmas that appear below together
with the intuition for the proof:

In order to prove the theorem we need to show that if the result of weaving A into Tp,
satisfies R4, then for every base system M satisfying Py, the result of weaving A into M
satisfies R,. For this purpose it is enough to show that for every infinite fair path o in the
woven system M + A there exists a corresponding infinite fair path 7 in the woven tableau,
Tp, + A, such that label(c) |sp= label(r) | 4p. In that case indeed in order to prove that
every path in the woven system satisfies Ry, it is enough to show that every path in the
woven tableau satisfies this property.

To simplify the notation, let us denote Tp, by T. The task of finding a fair path in 7 + A
that corresponds to a given fair path of M + A will be divided into steps according to prefixes
of o, and at each step a longer prefix will be treated. The following lemma will help to extend
the treated prefixes:

Lemma 1 Let S be a system, and let sy, . .., s; be states in S such that sy and s;. are reach-
able by a fair path from some initial state of S (the paths and the initial states for sy and sy
might be different), and for each 0 < j < k, the transition (s;, sj41) exists in S. Then there
exists a fair computation in S which contains the sequence of states sy, . . ., S.

Proof A computation is fair if it visits states from the Fairness set of the system model
infinitely often. Let my and m; be fair computations in S in which sy and s; occur, re-
spectively. Then 79 =0¢ - 59 - ..., and m = ... - s - oy for some oy and o;. Let us take
T =00 8y 8" Sk - 0x. This is obviously a path in S, and it starts from an initial state, as
did o¢. Moreover, 7 is a fair computation, because it has the same infinite suffix, oy, as the
fair computation . a

The following definition will be useful for identifying the “interesting” prefixes of the
path o:

Definition 7 Any infinite path 7 in a transition system can be represented as a sequence of
path segments—m =7 - 7' . ..., where each path segment 7' is a sequence of states such
that:

— If i =0, the first state of 7' is the initial state of 7

— If i > 0, the first state of 7/ is either an initial state of an advice or a resumption state of
the base system (i.e., a state in the base system into which the computation arrives after
an advice execution is finished)

@ Springer



72 Form Methods Syst Des (2010) 37: 61-92

resumption
state of A

’
AL S

\
\
\: IJ \I J A\ )
Yo ! )
T T T

-------------- \ ’

o
i A’s join point " ! E
:

Fig. 2 Example of division of 7 to path segments

— The last state of 7/ is either a pointcut state or a last state of an advice (after which the
computation returns to the base system)

— There are no pointcut states and no last states of advice inside 7’ (i.e., in the states of 7
that are not the first or the last state)

— 1 is the concatenation of the path segments of 7 in the order of their indices

An example of division of a path to path segments is presented in Fig. 2. Note that
the decomposition of a path to path segments is unique, and that, because of loops, there
can be resumption states within a segment. Note also that we could have an infinite (last)
segment—either in (the reachable part of) the base, or in the aspect. In our case all the paths
in question are infinite, so the last state of each finite path segment will be either a pointcut
or a last state of an advice. Every resumption state is reachable in the system before weaving,
as we assumed A to be a weakly invasive aspect with respect to M.

Now if we are given apathof M + A, 0 =0 0! ... where o’-s are the path segments
of o, for each finite prefix of ¢ consisting of a number of path segments we define the set of

corresponding path-segment prefixes of fair paths in T + A:

Hl — {]TO 7-[1 ..... 7-[’|
label(z® - - - - - ) lap= label(c® - - - - - ) lap,
A fair path in 7 + A such that w = 7% 7', ..

Each element in [7; is a prefix of an infinite fair computation of T + A corresponding to the
i-th prefix of o, thus the following lemma will show that for every finite prefix of o there
exists a corresponding prefix of a fair computation in 7 + A:

Lemma 2 Given a fair computation o of M + A, and sets of prefixes I1;-s as defined above,
Vi > 0.011; # 0.

Proof The proof is by induction on i.

Base: i =0 To show that IT, is not empty we need to show the existence of w° such that
label(1t°) |4 p= label(c®) | 4p and 7° is a prefix of some fair path 7 in T + A. 0¥ is the
first path-segment of a fair path in M + A, thus there is no advice application before ¢° or
inside it. So 0¥ is also the first path segment of a fair computation in M. According to the
assumption on M, M |= P,, thus for every fair path starting from an initial state of M there
exists a corresponding fair path in 7'. In particular, there exists a fair path w =1y, ..., #, ...
in T such that label(c°) | 4p= label(ty, . .., 1) |ap. Then again, as fo, ..., fy is a beginning
of a fair path in T, and there are no pointcuts in it, except maybe for the last state, it is also a
beginning of a fair computation in T + A. So let us take 7% = 59, .. ., 5;. We are left to show

@ Springer



Form Methods Syst Des (2010) 37: 61-92 73

that 7° is indeed a path-segment, and then it will follow that 7° € ITy, meaning that I is
not empty.

label(ty) = label((c°)o), thus 1, is an initial state of T + A. There is no pointcut inside
o0, because it is a path-segment, so the last state of o (if exists) cannot be a return state
of advice application, which means that it has to be a pointcut state. Due to the agreement
on labels, the last state of 7% will also be marked as a pointcut state (or, if oY is infinite,
there will be no last state in 7°). For the same reason, there are no pointcut states among
to, - .., ty—1, which, in the same way as for o9, implies that there are no advice return states
also. Thus both ends of 7° are legal ends of a path-segment, and there are no pointcut states
and no advice return states inside 7°, which makes it, indeed, a legal path-segment.

Induction step Let us assume that for every 0 <i < k, I1; # (). We need to prove that
I, # 0.

The induction hypothesis holds, in particular, for i = k — 1, thus there exists some prefix
p AT ARPRR %=1 of a fair computation of T + A, corresponding to the prefix 60! - ... g*~!
of M + A’s computation, o. Let us denote by s_first(i) the first, and by s_last(i) the last
state of i-th path-segment of o (o), and symmetrically for the states of path segments of
T + A—by t_first(i) the first, and by ¢_last(i) the last state of i-th path-segment. There are
two possibilities for s_last(k — I):

1. s_last(k — I) is a pointcut. Then ¢_last(k — 1) is also a pointcut, because due to the
induction hypothesis label(s_last(k — 1)) |ap= label(t_last(k — I)) |ap. Then in every
continuation of the computation both in M 4+ A and in T + A the advice of the aspect
is performed, thus the k-th path-segment is in both cases the application of the same
advice from the same state, and the agreement on the labels of the k-th path-segments
is trivially achieved. Moreover, for the same reason the existence of an infinite fair path
with the prefix 7% - ! . ... . 7%= implies the existence of an infinite fair path with the
prefix 7° . ! - ... . ¥, because every continuation of the first prefix had to be an advice
application. From the above it follows that in this case IT; # @.

2. s_last(k — 1) is a last state of the advice. This, in particular, implies that s_last(k) is a
pointcut state, and no advice has been applied between s_last(k — 1) and s_last(k). As-
pect A is weakly invasive with respect to M, thus s_last(k — 1) is a reachable state in
M (more precisely, the state reachable in M is the projection of s_last(k — 1) on AP).
As no advice is applied between s_last(k — 1) and s_last(k), we have that the whole
path-segment o is in the reachable part of M. Moreover, due to Lemma 1, as both
s_last(k — 1) and s_last(k) are reachable by some fair paths from some initial states
of M, we also have that there exists a fair computation of M containing the sequence
s_last(k — 1), s_first(k), ..., s_last(k). All the fair computations of the reachable part of
M are represented in the tableau T. Thus, in particular, the above fair path has a cor-
responding path in T, and, as there was no pointcut and no advice application inside
the sequence s_last(k — 1), s_first(k), ..., s_last(k), there are also no pointcuts and no
advice applications in the corresponding sequence in the computation of T, and thus
there exists a corresponding sequence of states in T + A, 7*. The last state of 77!,
t_last(k — 1), is reachable from the initial state of 7 + A by some fair path, as IT;_; is
not empty. Moreover, all the possible prefixes of such fair pathes appear in I7;_, thus at
least one of them continues to the sequence 7¥. So indeed we obtain that there exists a
sequence of states ¥ corresponding to o* in the woven tableau, for which a fair contin-
uation exists. We are left to see that the sequence of states, ¥, is indeed a path segment
in the woven tableau computation. But this is true due to the agreement on labels of the
states, label(n%) |, p= label(c¥) |4 p: the path segment o* started from a return state of

@ Springer



74 Form Methods Syst Des (2010) 37: 61-92

an advice, ended by a pointcut, and had no advice applications in the internal states, so
the same is true for 7% and thus 7* is a path segment.

Thus, indeed, the set of possible continuations, I7;, is never empty. O

Proof of Theorem 2 Now let us return to the proof of Theorem 2. Let us be given an infinite
fair path o in the woven system M + A. From Lemma 2 it follows that there exists an
infinite path 7 in the woven tableau corresponding to the given path o—all the prefixes of
7 appear in the I1;-s above, and due to the lemma, the I7;-s are all non-empty. So in order
to complete the proof of the theorem we need only to notice that every path constructed
from the prefixes in I7;-s above is fair, for the following reason: There are two possibilities
for the infinite suffix of . It either has infinitely many advice applications, or there exists
some infinite suffix in which no aspect state is visited. If there are infinitely many advice
applications, some state of the advice must be visited infinitely often, and all the states of
the advice are defined as fair. If there is no advice application after some state, then there
are only a finite number of path segments of 7, and the last path segment is infinite. But, as
we know, this path segment belongs to some fair path in 7 + A, so this must be a fair suffix,
and so the computation 7 is indeed fair. This completes the proof of Theorem 2. ]

Although in our verification algorithm we make use of the entire reachable part of tableau
Tp,, it does not serve as the mechanism for performing LTL model checking, but rather
forms (part of) the system to be checked. The tableau for even a complex assumption for-
mula is likely to be much smaller than models of concrete base systems that satisfy such
assumptions. Of course, during the model checking step of the algorithm, which dominates
the time and space complexity, any sound optimizations may be employed to reduce the
complexity.

As a first abstract example, suppose we have an aspect with base system assumption
Py = AG((—a A b) — Fa)—that is, any state satisfying —a A b is eventually followed by
a state satisfying a. We would like to prove that the application of our aspect to any base
system satisfying P, will give an augmented system satisfying result R4 = AG((a A b) —
XFa)—that is, any state satisfying a A b will eventually be followed by a later state satisfying
a.

Figure 3(a) shows the reachable portion of the tableau for the assumption P4. In the
diagram, shaded states are those contained in the only fairness set. The notation Xg, not
formally part of the state label, designates states in the tableau which satisfy Xg for subfor-
mula g = Fa (this labeling serves only to differentiate states; other labels of this form have
been omitted for clarity, and all such labels become invalid after weaving). For the example
pointcut descriptor p = (a A b), this tableau machine is also pointcut-ready for p (since p
references only the current state), simply by adding pointcut to the labels of s3 and ss.

Figure 3(b) shows the state machine A for the advice of our aspect. This advice will be
applied at the states matched by p, and Fig. 3(c) gives the weaving of A with Tp, according
to p. Model checking this augmented tableau will indeed establish that it satisfies the desired
property R,. This result follows neither from the aspect nor base machine behavior directly,
but from their combined behavior mediated by p. And since Tp, + A = R4, any M |= P,
will yield M 4+ A |= R4.

Figure 4(a) depicts a particular base machine M satisfying P4, as could be verified by
model checking. Again, the shaded states are those in the only fairness set. Although this
M is small, it does contain atomic proposition ¢ not ‘visible’ to the aspect, and it has a
disconnected structure very unlike the tableau.

@ Springer



Form Methods Syst Des (2010) 37: 61-92 75

RONONO)

(a) The reachable portion of tableau Tp, for Py = (b) A simple aspect machine A.
AG ((manb)— Fa)

(¢) Augmented tableau Tp, + A, satisfying Ry =
AG ((anb) — XFa).

Fig. 3 Example augmented tableau

From Fig. 4(b), one sees it is indeed the case that the augmented machine M + A satisfies
R ,—but there is no need to prove this directly by model checking. This holds true even
though the addition of the aspect has made a number of invasive changes to M: state s, is
no longer reachable, because its only incoming edge has been replaced by an advice edge;
a new loop through sy has been added, while in M there was no path visiting sy more
than once; there is a new path connecting the previously separated left-hand component to
the right-hand; and so forth. In more realistic examples, the difference in size between the

@ Springer



76 Form Methods Syst Des (2010) 37: 61-92

(a) One particular base machine M. (b) M+ A: M woven with A according to p.

Fig. 4 Example weaving where M |= P4 and M + A = Ry

augmented tableau (involving only P4, p, and A) and a concrete augmented system with
advice over a full base machine would be substantial. This can be seen in Sect. 6, where a
library of aspects is described, in which there is a need to verify more realistic aspects and
check interference among them.

4 Interference analysis

In a straightforward approach, to be able to establish interference-freedom of a library of
aspects in terms of Definition 6 one would have to check all the possible subsets of the library
and all the possible orderings of weaving of the aspects in any subset. But in our method,
as proven later, it is enough to perform pairwise interference-freedom checks between the
aspects in the library in order to ensure interference-freedom of a library as a whole. To
simplify the discussion below, we define the following properties of aspect interaction:

Definition 8 Given two correct aspects, A and B, we say that the KP4 property holds if
for every system S satisfying the assumptions of both A and B weaving A into S preserves
the assumption of B. We say that the KR 45 property holds if the guarantee of A is preserved
when weaving B into any system (S + A), that resulted from weaving A into a system S
satisfying the assumptions of both A and B. More formally,

KPsp 2 VS[(S = Pa A Pp) = (S+ A = Pp)]
(“Keeping the Precondition of B when weaving A before B”’) and

KRxp 2 VS[(S = Ra A Pg) = (S+ B = R)]
(“Keeping the Result of A when weaving A before B”)

The statements KPg4 and KRp, are defined symmetrically. If all the four statements—
KP4p, KRsp, KPps and KR —are true, A and B are semantically non-interfering. (The-
orem 3 below shows this is a special case of Definition 6 for n = 2.) In this paper we are
only interested in systems for which both A and B are weakly invasive, but the statements
are written in more general form, as they will be relevant also for strongly invasive aspect
verification and interference detection.

@ Springer



Form Methods Syst Des (2010) 37: 61-92 77

Notice that it might happen that weaving A before B results in violation of the desired
properties (KP4p and/or KR 4p), but weaving B before A does not, or vice versa: in many
cases the result of weaving A before B, (S + A) + B, will differ from the result of weaving
B before A, (S + B) + A, as the advice of the aspect woven first may not apply to the
one woven afterwards. For the same reason both orderings above might differ from the
result of simultaneous, Aspect]-like, weaving—the relation between them will be discussed
in Sect. 4.5. The order of weaving will matter, for example, in the Composition Filters
model [3], and in languages with dynamic aspect introduction. Moreover, even in Aspect],
if we first weave A into S and compile the program, and then weave B into the obtained Java
bytecode, we do not get the same result as if A and B were woven into S at the same time
by the Aspect] weaver.

4.1 Proving interference freedom

The following theorem shows that the condition for non-interference following Definition 8
is a special case of Definition 6 for n = 2.

Theorem 3 Let A and B be two aspects with the specifications (P4, R4) and (Pg, Rp)
respectively, and assume that both aspects are correct relative to their specifications. Then
to prove that A and B do not interfere, it is enough to show that the statements KP 45, KR,
KPBA and KRBA hold.

Proof According to Definition 6, aspects A and B do not interfere if the following two
statements are true:

OK 45 £VS[(S = Pa A Pg) = ((S+A)+ B = Ry A Rp)]

and
OKps 2VS[(SEE PAAPg)— ((S+ B)+ A= Ra A Rp)]

Let us show that if A and B are correct aspects, and the KP,5 and KR,p statements hold,
then OK 45 holds. The KP 45 statement means that the weaving of A into a system S satisfy-
ing the assumptions of both aspects does not invalidate the assumption of B, if both aspects
are weakly invasive in S. Such an S, in particular, satisfies the assumption of A. We know
that after weaving A into a system S that satisfies P4, R4 is true, for it is assumed that
A satisfies its specification. Thus together we have that (S + A) will satisfy not only the
assumption of B, but also the guarantee of A, and the following statement will be true:

KP,p 2VS((S = Py A Pg) > (S+ AERa A Pp))

KR,p means that weaving B into a system in which the guarantee of A holds does not
invalidate this guarantee. B also satisfies its specification, so in the same way as for A,
S + B from KR, satisfies Rp, and we have

KR, 3 2VS((S k= Ra A Pp) — (S+ B = Ry A Rp))

Now we can combine KP/,; and KR', ; by substituting S + A instead of S into KR/ ;. As a
result we will obtain the desired property, OK 4.

The proof that OK g4 follows from KPg,4 and KRp, is symmetric. Together we obtain
that if all the premises of the theorem hold, A and B do not interfere. O

@ Springer



78 Form Methods Syst Des (2010) 37: 61-92

Theorem 4 Let Ay, ..., Ay be aspects with the specifications (Py, Ry), ..., (Py, Ry) re-
spectively, and assume all these aspects satisfy their specifications. Assume also that for
every pair of indices i, j KP;; and KR; ; are true. Then the set A ={A;,..., Ay} is
interference-free.

Proof In order to prove the theorem, the following lemma will be useful:

Lemma 3 For every set of n > 2 aspects {A1,...,A,} satisfying their specifications
(P, Ry), ..., (Py, Ry), if for every pair of indices i,j KP;; is true, then for every
base system S such that S = Py A --- A P,, the following holds: For every 0 < k < n,
(..(S4+A)+---+ A E Pyt A--- A P, (Where the case of k = 0 means that no aspects
are woven into the system S).

Proof The proof is by induction on k.

Basis: k = 0. We need to show that S = P; A --- A P,, but this statement is one of the
premises of the lemma.

Induction step: Assume that for every k such that 0 <k < m < n the statement holds, and
let us prove it for k = m. Let S be a system such that (S = P; A--- A P,). Let us denote the
system (... (S+A)+---+A,_1) by §’. We need to show that (S'+ A,,) = Puy1 A---AP,.
From the premises of the lemma, for every m + 1 <i <n the KP,,; property holds. Also,
from the induction hypothesis, S’ = P, A-- - A P,, and, in particular, S’ = P,, A P;. Together
we have that indeed (S' + A,,) = P; foreverym + 1 <i <n. O

Now let us prove Theorem 4. Let us be given a subset of 1 <n < N aspects from .4, and
a permutation (iy, ..., i,) of their indices, indicating the chosen weaving order. Without loss
of generality, we can call them (1, ..., n). (Clarification: We can always permute the aspects
in the library so that for every j, aspect number i; will stand on the j-th place. Then the order
1, ..., n on the permuted library will give the same sequence of aspects as the order iy, ..., i,
on the original one.) We need to prove that for every base system S, if S=(PyA--- A P,)
then (...(S+ A;)+---+ A,) E R A--- A R,. The proof is by induction on n.

Basis: If n = 1, there is only one aspect, A;. Let S be a system satisfying P;. The aspect
A satisfies its specification, thus the statement (S = P;) — (S 4+ A; = Ry) holds.

Induction step: We assume that the statement holds for any 1 < k < m aspects from the
n given, and prove it for k = m. Let us be given a base system S satisfying Py A --- A P,.
We will denote by S’ the system (... (S+ A;) +---+ A, _1). From the induction hypothesis
we have that S’ = Ry A --- A R,_;. Lemma 3 is applicable here, so we also have that S’ =
Py A --- A P,. In particular, S’ = P,,. Thus, as A,, is correct according to its specification,
S"+ A, E R,. And for every i #m, 1 <i <n, the KR; ,, property holds, thus from the
fact that S’ = P,, A R; it follows that indeed S’ + A,, = R;. Together we get that indeed
(..S4+AD+---+A)ER A---AR,. O

4.2 Direct interference-freedom proofs

An interference-freedom proof that uses Theorem 3 for pairwise interference-freedom
proofs is called an incremental proof. Alternatively, we could prove the OK 45 and OKp4
statements directly, without checking that the assumption of the first woven aspect and the
guarantee of the second woven aspect are preserved. However, as opposed to the incremen-
tal proofs assumed in Theorem 4, a direct proof of non-interference among pairs of aspects
does not generalize to weaving of more than two aspects. As described in Sect. 6.2.2, even

@ Springer



Form Methods Syst Des (2010) 37: 61-92 79

if aspects A, B, and C are pairwise interference-free, and are correct relative to their as-
sumptions and guarantees, weaving of all three into a system with P4 A Pg A Pc does not
guarantee R4 A Rp A R¢ in the resulting system.

Thus the incremental method is essential for showing interference-freedom among
groups of aspects of any size. However, the method is incomplete in that there could be
aspects that are interference free, but the method will not allow proving it. In particular,
by demanding that aspect B will preserve R4 when woven into any system that satisfies
R4 A Pg, we pose too strong a restriction, because we are interested in this statement only
for base systems in which aspect A is present.

4.3 Feasible aspect composition

In some cases a conflict in the specifications of the aspects exists, which means that the
specifications do not allow composition of the aspects. Then, for the order considered, these
aspects will always interfere, regardless of their advice implementation. This composition
of the aspects will be called not feasible according to the following definition:

Definition 9 Given two aspects A and B with specifications (P4, R4) and (Pg, Rp) respec-
tively, the composition of A before B is feasible iff all the following formulas are satisfiable:
Py AN Pg, Ry N Pg, Ry N Rp.

If a composition of A before B is not feasible, it means that A has to interfere with B.
Thus as a first step in detection of interference, a feasibility check can be performed—i.e.,
a satisfiability check on the appropriate formulas. It is recommended to perform a feasibility
check before starting the full verification process described in Sect. 5, because this check
is much easier and quicker, and then proceed to the verification only if the composition of
the aspects is feasible. However, this is not an obligatory stage of the verification process,
because if some contradiction exists, the verification process will also detect interference
and provide a counterexample.

4.4 Error analysis

When interference has been detected between two aspects, the cause of the verification fail-
ure should be localized—which property was violated, and which advice is “guilty”. The
verification process is divided into stages, making the localization straightforward: if we fail
to prove OK 4p and there is a problem in violating the assumption of B, the proof of KP,p
will fail, and if the advice of B violates the guarantee of A, the failure will occur in the proof
of KR AB-

After the cause of the failure is localized, one needs to decide on what steps should be
taken next. In many cases there is a need to add the functionality of both aspects to the
base system, in spite of the interference detected between them. There are several possible
ways to handle this problem, depending on the type of the interference detected, and the
results of the feasibility check (thus it is recommended to perform the feasibility check
of the specifications as a first step of error analysis in case an interference is detected). One
should then decide whether to change the advice of one of the aspects (or both), and whether
the specification of the aspects should be refined.

A typical error analysis will be shown for the interference detected in the example of
Sect. 6.2.1.

@ Springer



80 Form Methods Syst Des (2010) 37: 61-92

4.5 Joint weaving

The above discussion treated only sequential weaving. Let us now consider the case of
simultaneous weaving. Such a weaving at every point of the program decides whether to
apply A, or B, or both, and in which order (as opposed to sequential weaving, where the
possibility of inserting only one aspect at a time is checked). One approach is to reduce joint
weaving to sequential weaving, whenever possible. Then given aspects A and B, we would
like to check whether weaving both A and B together into some base system is equivalent
to one of the sequential weavings (A after B or B after A) into the same base system. If A
and B have a common join-point, then the ordering of application may not be well defined,
and this is well-known to create possible ambiguity. The lemmas below assume no common
join-points, because some of the alternative semantic meanings violate the lemmas.
The following definitions will be useful to us:

Definition 10 Let A and B be two aspects, and S be a system. The result of simultaneous
weaving of A and B into S, S + (A, B), is the following system: The set of initial states of
S + (A, B) is the same as in S. For each state s in each computation of S + (A, B), if s
is a join-point matched by A (and/or B), then the advice of A (and/or B) is executed at s,
otherwise one of the enabled transitions of S is executed at s.

Definition 11 Let A and B be two aspects, and S be a system. Let us denote by J the set of
all the join-points that are matched by B in S, and by J'—the set of all the join-points that
are matched by B in (S + A). We say that A creates a join-point matched by B if there exists
a join-point j; € J’ such that j; is notin J (thatis, J’ is not included in J). We also say that
A removes a join-point of B if there exists a join-point j, € J such that j, is not in J’ (that
is, J is not included in J').

Thus if A does not create or remove join-points matched by B, it means that the join-
points matched by B in the original system S are exactly the same as in (S + A)—the system
obtained by weaving A into S.

The following lemma shows that if weaving aspect B into a base system does not affect
join-points of A (i.e, the join-points of A in the woven system are the same as in the base
one), and the symmetric statement holds—weaving aspect A into a base system does not
affect join-points of B—then the order of weaving of the aspects “does not matter” for the
final result:

Lemma 4 Let S be a system such that there is no join-point in S matched by both A and B,
and they do not create or remove join-points matched by each other. Then the simultaneous
weaving of A and B into S (S + (A, B)) is equivalent to both sequential weavings: of A before
B ((S 4+ A) + B) and of B before A ((S + B) + A). That is, the weaving is both associative
and commutative.

Proof Since A and B do not have common join-points, at each join-point only one of the
advices is inserted, and thus there is no possibility of either changing the order of application
of the advices, or achieving different interleavings of their operations (where each interleav-
ing could result in a different combination of operations of the advices in a computation and
might violate the specification in some of the cases, and satisfy it in the others).

Moreover, let us notice that the aspects do not create or remove join-points matched by
each other, so it does not matter in what order the weaver explores those join-points. The

@ Springer



Form Methods Syst Des (2010) 37: 61-92 81

result will be always the same: at each join-point one and only one advice will be applied.
Thus indeed S + (A, B) = (S+ A)+B=(S+ B) + A. O

It is also not difficult to treat the possibility of adding join-points of the second woven
aspect in the advice code of the first, as seen in the following lemma.

Lemma 5 Let S be a system such that there is no join-point in S matched by both A and
B, and B does not create or remove join-points matched by A. Let it be possible for A to
create join-points matched by B, but only inside its (A’s) own advice and without removing
Jjoin-points matched by B. Then the simultaneous weaving of A and B into S (S + (A, B)) is
equivalent to weaving A before B ((S + A) + B). That is, the weaving is associative, but not
necessarily commutative.

Proof Aspect A might create join-points matched by B inside A’s advice only, and there is
no other modification of the join-points by any of the aspects. Thus all the join-points that
appear in the base program will be found and correctly attributed by any weaving. No join-
points of A can appear inside the advice of B, so the only potentially problematic join-points
are those appearing inside the advice of A. Let us see what will happen to them in each of
the weavings.

When the simultaneous weaving is performed, the join-points of B inside A will be iden-
tified, and the advice of B will be woven in. The same will happen if we weave B after A.
However, when weaving A after B the new join-points will not be identified—the weaver
will not look for them, because from its point of view all the aspects except for A have been
treated (or do not exist) by the time it comes to weave A in. Thus, indeed, in this case we
can only say that S + (A, B) = (S+ A) + B. O

In order to check that the above lemmas can be applied, we need to establish that A and
B do not match common join-points. For that purpose existing tools mentioned in Sect. 7
can be used ([9, 16]).

5 MAVEN

The verification algorithm defined in Sect. 3 has been implemented in a prototype system
called MAVEN, for “Modular Aspect VerificatioN.” This tool is available as part of the Com-
mon Aspects Proof Environment (CAPE) [19] developed by the Formal Methods Lab of
AOSD-Europe, an EU Network of Excellence. The CAPE is an extensible framework for
aspect verification and analysis tools.

In MAVEN, aspects are specified directly as state machines, albeit using a more con-
venient and expressive language than direct definition of the machine states and transitions.
MAVEN operates on the level of textual input to and output from components of the NUSMV
model checker [6]. NUSMYV is a CTL (branching-time logic) and LTL model checker that
accepts its input as textual definitions of state machine systems and their specifications. We
have extended the NUSMYV finite state machine language to create FSMA, for “finite state
machine aspects,” which describes aspects and their specifications. The language is based
closely on the usual input language of NUSMV, with some added restrictions, and with a
collection of new keywords used for aspect-specific declarations:

@ Springer



82 Form Methods Syst Des (2010) 37: 61-92

VAR —-BASE Following this directive, one or more definitions of the base system vari-
ables appear. The possible types of the variables are those defined in NUSMV. Only
the variables mentioned in the aspect specification or updated in the advice should be
defined.

VAR ——ASPECT Following this directive, one or more definitions of aspect machine vari-
ables can appear.

POINTCUT Describes the aspect’s pointcut. One predicate appears after each POINTCUT
directive. Only current-state expressions are allowed; (past) LTL syntax is not permitted.
In order to define a pointcut p that contains past LTL operators,the user is required to
defined a new state variable (e.g., “p_state”) and divide the pointcut definition into two
parts: add the statement “POINTCUT p_state” to the list of POINTCUT directives, and
add the assumption “G(p_state <> p)” to the assumptions of the aspect. The complete
pointcut definition is the disjunction of all POINTCUT directives; this allows the user
to specify multiple logical pointcuts for the aspect. One or more POINTCUT directives
should be present.

GLOBINIT Initialization of the aspect variables in the woven system is defined by the con-
junction of all the GLOBINIT directives. These directives are optional, and if no directive
is given for some aspectual variable, no restriction will be posed on its initial value in
the woven system.

LOCINIT Initial states of the aspect machine are defined by the conjunction of all the
LOCINIT directives. These directives are optional.

LOCMEM A list of aspect local memory variables, separated by “,”, follows this directive.
The values of these variables will be preserved between the executions of the advice.
This list is optional.

TRANS Gives a restriction on the set of valid transitions within the aspect machine. As
in NUSMV, the conjunction of all TRANS directives forms the complete restriction.
Unlike in NUSMV, TRANS is the only directive available for specifying state machine
transitions in FSMA. These are the only restrictions on the transitions of the aspect
machine, thus any pair of states for which all the TRANS predicates hold is considered
to be included in the aspect transition relation (exception—RETURN states, see below).

RETURN One state predicate (involving aspect and/or base system variables) appears af-
ter each RETURN directive. The disjunction of all the RETURN directives defines the
state(s) in which the control should return from the advice back to the base system. These
states have no outgoing transitions in the advice machine, even if some transitions are
permitted by TRANS.

ONRET One next-state statement follows each ONRET directive. If the value of an aspect
variable should be changed while returning from the advice machine to the base system
(for example, reset to its initial value), the ONRET directive is used. The conjunction
of all the ONRET directives defines the next state of the aspect variables after returning
from the advice.

LTLSPEC —-BASE Defines an LTL formula that should hold in the base system as part of
the aspect requirements. The conjunction of all the LTLSPEC ——BASE directives is the
complete precondition of the aspect, used to construct the assumptions tableau.

LTLSPEC ——AUGMENTED Defines an LTL formula that should hold in the woven sys-
tem as part of the guarantee of the aspect. The conjunction of all the LTLSPEC —-
AUGMENTED directives is the complete resulting assertion of the aspect, which will be
model-checked.

Tableau construction in MAVEN 1is performed by 1t12smv, an independent component
of NUSMV. The 1tI2smv program takes as input an LTL formula in the syntax used

@ Springer



Form Methods Syst Des (2010) 37: 61-92 83

by NUSMYV, and outputs the textual representation of a corresponding tableau state ma-
chine. Note that during the construction of the assumption tableau, it is automatically made
pointcut-ready due to the additional assumption statements inserted for past-LTL pointcut
definitions. We weave the tableau with the aspect according to the pointcut by modifying
this textual representation; the result is a valid NUSMYV input file representing the woven
tableau and the augmented system results that must hold in it, which can be given directly
to the model checker for verification.

A usage guide for MAVEN and a movie demonstrator are available at [5], as well as a
detailed description of some implemented examples. One of the examples is a variant of
aspect E described in Sect. 6 (the example on the web page is called “Security Aspect”).

Our interference detection method is based on Theorem 3, and it also uses MAVEN as a
subsystem. To show that weaving aspect A before B does not lead to interference, perform
the following steps:

1. For KP4p, build a tableau that corresponds to the conjunction of the assumptions of the
aspects, P4 A Pg, weave the advice of A and show that the assumption of B, Pg, is true
of the result. That is, run MAVEN to show Tp,rp, + A = Pp.

2. For KR 4, build a tableau that corresponds to the conjunction of the assumption of B and
the guarantee of A, R4 A Pp, weave the advice of B, and show that the guarantee of A,
R4, still holds for the result. That is, run MAVENto show Tk, rp, + B = R4.

3. If in both cases the woven models built are deadlock-free, and both verifications succeed,
then aspect A can be woven before B.

The incremental proof that B can be woven before A is symmetric. The verification can be
preceded by a feasibility check, for error analysis (see Sect. 4.4).

Note: in order to be able to rely on MAVEN verification results the following two as-
sumptions are needed: the basic assumption that A and B are both weakly invasive for any
base system S to which they will be woven, and an additional assumption that though as-
pect A is allowed to add join-points for aspect B, and even contain join-points of B inside
the advice, aspect B remains weakly invasive in the system S + A. (Additional discussion
on restriction of the possible influence of one aspect on join-points of another appears in
Sect. 4.5.) These two assumptions are sufficient for all the verification tasks above. The case
of KP4 check is obvious, as, by Theorem 2, Tp, ,p, + A contains all the computations of
S + A. The soundness of the KR,z check follows from the next two observations: First,
if S+ A satisfies both R4 and Pg, then all its computations are represented in Tg, np,-
And second, due to the assumption that B remains weakly invasive in S + A, Theorem 2 is
applicable again. Thus indeed all the computations of (S + A) + B are represented in the
woven tableau T, \p, + B.

The above incremental method is sound, due to the above note and Theorems 3 and 4,
but, as already noted at the end of Sect. 4.2, not complete. In addition to the inherent incom-
pleteness, there are practical reasons for not always succeeding in proving non-interference.
First, the model checking itself may not succeed. If the model is infinite, or finite but too
large, the model-checking will collapse without providing any answer. So, as always when
model-checking, the models and the properties should be described at a sufficient level of
abstraction. Second, the specification of some aspect may not be as general as possible.
Specifically, the assumption of aspect B, Pp, may not be the weakest possible, or the guar-
antee of A, R4, may not be the strongest possible. In the first case, as Pg is not the weakest
possible, aspect A might not preserve the assumption of aspect B, but assures some other
property, Py, that is enough for aspect B to operate correctly. Then the KP 45 check fails, but
the OK 45 is true. In the second case, symmetrically, it might happen that we cannot prove

@ Springer



84 Form Methods Syst Des (2010) 37: 61-92

that aspect B preserves the guarantee of A, because the assumption R4 A Py is not strong
enough to ensure R, after B is woven, but the OK 4p property is true because A actually
guarantees a stronger statement, R’,, and with this assumption B is able to preserve R, (for
every system S, if S = R, A P, then S+ B |= R4).

6 Example: aspect library verification

In this section we present some parts of the verification process for a library of reusable
aspects. A typical library for reusable aspects could deal with concerns like communication
security, or system backup for fault-tolerance. Some aspects from such a library, and their
verification process, are described below.

In order to be able to check whether one aspect preserves an assumption or a guarantee
of another one, we need to be able to model the influence of the operations of the advice on
the variables to which the assumption or the guarantee refers. By default, we assume that
advice of an aspect does not change values of the variables that did not appear in its own
specification and description. But as variables that appear in our models and specifications
are abstraction of actual system variables, sometimes different variables have a semantic
connection which we need to preserve in our specifications and models. For our examples,
the following connections were identified and used:

— (login_psw_send — psw_send) (sending a password from a login screen is a special case
of sending a password in the system)

— ((psw_in_usr A send_usr) — psw_send) (sending user data that contains a password im-
plies that a password is sent in the system).

6.1 Aspect descriptions

We will consider four aspects.

Aspect E is responsible for encrypting passwords before sending. The join-point E ad-
vises is the moment when the password-containing message is to be sent from the login
screen, and E’s advice is a “before” advice that encrypts the message. E should guarantee
that each time a password is sent, it is encrypted. E’s assumption might be that password-
containing messages are sent only from the login screen in the base system. The assump-
tion of the aspect might be necessary because the advice is unable to identify password-
containing messages from the message content only. In fact, there is more to E: each time
a password is received, it is decrypted. But this part is irrelevant to our example, so we’ll
ignore it here. A partial specification for E can be written as:

P2 G(psw_send <> login_psw_send),
R & G(psw_send — encrypted_psw)

where the predicate psw_send means that a message containing a password is being sent, and
login_psw_send means that the password is being sent from the login screen. The pointcut
of E can be given as a state predicate login_psw_to_send, that becomes true each time be-
fore a message is to be sent from a login screen. It is related to the login_psw_send predicate
in a way that each state where login_psw_send holds is preceded (but maybe not immedi-
ately) by a unique state in which login_psw_to_send is true. This relationship is part of our

@ Springer



Form Methods Syst Des (2010) 37: 61-92 85

general knowledge about the base system, and is expressed in the following addition to the
assumption of the aspect:

G(login_psw_send — ((—login_psw_send) S (login_psw_to_send A —login_psw_send)))

Aspect M provides the possibility to “remember” the user’s password in the system,
so that the user will not have to type the password during subsequent log-ins. To add this
functionality to the system, M should add some introductory operation, e.g., a new checkbox
which, when checked, indicates that the password should be stored for the user. The advice
of M might add a private field “password” to the User class, and store the password there
after the checkbox is checked. A partial specification for M thus is:

Py £ true

(M does not need to assume anything about the base system, as the checkbox is added by M
itself), and

Ry & [G(req_store_usr_psw — (req_store_usr_pswU(psw_in_usr)))]

where req_store_usr_psw means that “remember my password” has been checked, and
psw_in_usr means that a password appears as part of the user data. The moment the pred-
icate req_store_usr_psw becomes true is the pointcut of the aspect. Note that before M is
woven into a base system, objects of the User class might, or might not, contain the password
as part of the base system activity, but after weaving M they surely do.

Aspect B can “back up” user data, to increase fault-tolerance: it sends all the user data
to the backup server upon request. The aspect does not need to assume anything about the
base system, and guarantees that if there is a request for backup, all the data of the user will
be sent. More formally:

A
Py = true,

Rz 2 1[G (req_backup — (req_backupU(send_usr)))]

where the predicate req_backup means that there is an unprocessed request for sending user
data, and send_usr means that all the user data is sent. The moment the predicate req_backup
becomes true is the pointcut of the aspect.

Aspect F provides a list of security questions to the user, and if the questions are an-
swered correctly, F guarantees that the user will get his password via an e-mail, and thus
retrieves a forgotten password. Like aspect M, aspect F might add a new button—*‘Forgot
my password”—to the system so that we can define the pointcut of F as the moment when
this button is pressed. F’s advice then provides the dialog with questions, checks the an-
swers, and in case all the answers are correct—sends an e-mail to the user. More formally,
F’s assumption is

Pr £ true
And F’s guarantee is

Ry 2 [G((button_pressed A quest_answered) — F(psw_send))]

where button_pressed is the flag that means forgetting the password has been reported and
not yet treated. The moment the predicate button_pressed becomes true is the pointcut of
the aspect.

@ Springer



86 Form Methods Syst Des (2010) 37: 61-92

Intuitively, the three aspects E, M, and B together interfere, and cannot be woven to-
gether in one system, because aspect B violates the guarantee of E, by sending passwords
unencrypted after M saves them. Weaving both E and F can also be problematic, as will be
shown in detail later. Although the interferences are easy to see here, when large libraries
are considered, automatic interference analysis is needed.

6.2 Aspect verifications

First of all, the verification procedure described in Sect. 3 has been applied to the aspects,
and they have been shown correct w.r.t. their assume-guarantee specifications. The detailed
descriptions below refer to the pairwise interference checks performed to check interference
freedom of the library.

6.2.1 Encrypting passwords and retrieving forgotten passwords

As part of our interference checks, we would like to verify that weaving the passwords-
encrypting aspect (E) and the aspect retrieving a forgotten password (F) into the same system
is possible.

Let us check OK g incrementally. F’s assumption is true, thus E can not violate it. Thus
in order to check the possibility of weaving F after E, we need to prove only that the weaving
of F maintains the guarantee of E (the KRgF statement):

VS[(S = G(psw_send — encrypted_psw)) —
(S + F = G(psw_send — encrypted_psw))]

This statement seems to be reasonable, and the feasibility check succeeds, but the advice of
aspect F is implemented in such a way that the password sent from it is not encrypted. Thus
when trying to verify the KRy statement, a counterexample is obtained. It is a computa-
tion in which at some state s; the predicate button_pressed became true, and at the same
time the predicate encrypted_psw was false. Two states after that, at a state s,, due to the
operation of the aspect F, quest_answered became true (while button_pressed was still true),
and in the next state, s3, psw_send became true. But F does not encrypt the passwords, thus
encrypted_psw was still false at s3, contradicting the implication in Rg, so the verification
failed.

In order to check the possibility of weaving E after F, we need to prove that the weaving
of F to a system satisfying both assumptions maintains the assumption of E (the KPpp
statement):

VS[(S = G((psw_send <> login_psw_send) A (true)) —
(S + F = G(psw_send <> login_psw_send))]

However, the implementation of the advice of F leads to a violation of the assumption of E,
because F does not send the password from the login screen. Note that in this case, again,
there is no contradiction in the specifications of E and F, so the feasibility check succeeds,
and the interference is detected during the verification only. In this example, the conflicting
aspects do not share any join-points, and the interference does not emerge from updating
common variables.

At http://www.cs.technion.ac.il/ssdl/pub/SemanticInterference/ the whole cycle of veri-
fication for a variant of these aspects is presented: from Aspect] code to abstract models in

@ Springer


http://www.cs.technion.ac.il/ssdl/pub/SemanticInterference/

Form Methods Syst Des (2010) 37: 61-92 87

Table 1 Execution statistics for

verifications and interference Check type Result Model size Verification time (msec)
checks of aspects E and F.
‘Model size’ refers to the number  AspectE true 1127 26
of BDD nodes generated AspectF true 718 23
KPpFp true 1374 22
KRgFp false 1283 22
KPrEg false 2375 30
KRpEg true 2450 29

the MAVEN input format, followed by verification of each aspect alone w.r.t. to its assume-
guarantee specification, and then interference checks for the two aspects.

Verification results described above and some statistics on running the example are sum-
marized in Table 1. After obtaining the results, error analysis, as described in Sect. 4.4, was
performed for the cases in which interference was detected. For example, for the case of
KPrg we discovered that in this example the composition of aspects is feasible. If it would
be found unfeasible, we would know that a change of specification(s) is required, and in
this case the specification(s) should have been weakened. But as the specifications are not
contradictory, we do not have to change them. In such a case if neither of the assumptions
is too strong, a change in one advice, or in both, is necessary. For instance, in our example
we can change the advice of F to bring the user to a version of the login screen where the
password can be changed, instead of sending the e-mail with the password. In this case, if E
is woven after F, the password-sending operation of F is done by the user as another login-
password send and thus will be a legal join-point of E. Therefore the advice of E will be
performed and no password will be sent unencrypted. More formally: the specification of F
can stay the same, but as a result of the change in the advice, whenever psw_send is true, so
is login_psw_send. Aspect E and its specification will stay as before. Now the verification
will be of F’s new code relative to the specifications, so that KPrg and KR g now will hold.
This means that the sequential weaving of first F and then E is possible. Notice, however,
that weaving first E and then F would still be problematic.

Remark: as a result of verification of KPpg, a counterexample was obtained. Thus it
would be possible to stop the verification at this stage and try to amend the aspects and/or
their specifications before continuing to verification of KRpg.

Note that the detected interference does not mean that we can never add the above two
aspects to the same base system, even if the aspects and their specifications are not changed.
The result of our verification only means that we cannot do so without additional checks,
because we only state here that it is not true that the two aspects can be woven together
into every base system satisfying both of their assumptions. If we still want to add the two
unmodified aspects together to a given base system, an in-depth analysis of the particular
base system is required, and it might be the case that in this specific system the two aspects
would succeed to work together.

6.2.2 Three-way interference

Recall the aspects E (encrypting passwords), M (remembering passwords in the user’s
data), and B (backup of the user’s data). They have been shown correct w.r.t. their assume-
guarantee specifications.

These aspects interfere when all three are woven. The incremental verification method
succeeds to detect interference by pairwise checks only (see Table 2), in spite of the fact

@ Springer



88 Form Methods Syst Des (2010) 37: 61-92

Table 2 Pairwise interference checks results

Verification task ~ Result ~ Comment

Evs.B
KPgp true no need to check: Pp is true
KREp false invariant psw_send — encrypted_psw violated, and weaving fails
KPpE false a state where a password is sent not from the login screen can now be reached
KRpEg true
Evs. M
KPEm true no need to check: Py is true
KRgym true
KPyE true
KRy E true
Bvs.M
KPpy true no need to check: Py; is true
KRpm true
KPyp true no need to check: Pp is true
KRy B true

that each pair is possible alone. By Theorem 4 we know it should, and indeed, there are two
checks that fail for our example: The KPgg check fails, as a state where a password is sent
not from the login screen can now be reached, violating E’s assumption. The KRgp check
fails as well, because Ry alone (i.e., the fact that the passwords are always sent encrypted
when E is woven to the base system) does not imply that the passwords are not stored as
part of the user data, and thus when aspect B sends all the user data, the passwords might be
sent unencrypted. Note that with a slight change of specification, a variant of this example
can be created where the direct verification method will fail to detect interference among the
aspects, and only the incremental method will work.

Error analysis performed for this example showed that part of the above discovered in-
terference could be repaired, e.g., by saving the password in an encoded form in aspect M.

7 Related work
7.1 Modular aspect verification

The first work to separately model check the aspect state machine segments that correspond
to advice is [23], where the verification is modular in the sense that base and aspect ma-
chines are considered separately. The verification method also allows for join-points within
advice to be matched by a pointcut and themselves advised. However, the treatment there
is for aspects woven directly to a particular base program. Additionally, it shows only how
to extend properties which hold for that base program to the augmented program (using
branching-time logic CTL). Aspects treated in that paper can influence the control flow of
the base system, for example, in the case of around advice. However, all the aspects treated
are assumed not to modify data variables of the base system, thus not all possible weakly
invasive aspects can be analyzed.

In [20], model checking tasks are automatically generated for the augmented system that
results from each weaving of an aspect. That approach has the disadvantage of having to

@ Springer



Form Methods Syst Des (2010) 37: 61-92 89

treat the augmented system, but offers the benefit that needed annotations and set-up need
only be prepared once. That work takes advantage of the Bandera [14] system that generates
input to model checking tools directly from Java code, and can be extended to, for example,
the aspect-oriented Aspect] language. Bandera and other systems like Java Pathfinder [15]
that generate state machine representations from code can be used to connect common high-
level aspect languages to the state machines used here.

In [18] a semantic model based on state machines is given, and the treatment of code-
level aspects and join-points defined in terms of transitions, as in Aspect], is described. The
variations needed to express in a state machine weaving the meaning of before, after, and
around with proceed advice are briefly outlined.

The notion of reasoning about systems composed from two or more state machines is not
new, and the most prevalent method for doing so is the assume-guarantee paradigm, which
forms the basis of this work. In [8] and [29], among others, an assume-guarantee structure
for aspect specification is suggested, similar to the specifications here, but model checking is
not used. In [8], proof rules are developed to reason in a modular way about aspect-oriented
programs modeled as alternating transition systems; the treatment is for a particular base
program in combination with an aspect. And in [29], aspects are examined as transition
system transformers, but a verification technique is not introduced.

In most model checking works based on assume-guarantee, the notion of compositional-
ity is one in which two machines are composed in parallel. Composing machine M with M’
yields a machine in which composed states are pairs of original states that agree on atomic
propositions shared by the two machines. The work of [13] introduced tableaux to modular
verification. Under the parallel composition model, no issue analogous to aspect invasive-
ness arises, because the machines are combined according to jointly-available states.

An alternative mode of verification for composed systems is seen in [4], treating feature-
oriented programs built from collections of state machines that implement different features
within a system. Consequently, that framework uses a weaving-like process of adding edges
between initial and return states of individual machines, but those feature machines explic-
itly receive and release control over the global state, unlike the oblivious base machines
here. Work on extending properties modularly for features is presented in [10].

7.2 Checking interference among aspects

The way in which assume-guarantee specifications of aspects described in Sect. 2.2 are used
to define interference freedom is analogous to interference freedom among processes in
shared-memory systems [25]. In that classic work, interference freedom among processes is
defined in terms of whether independent and local Hoare-logic proofs of correctness for each
parallel process are invalidated by operations from other processes. The individual proofs
that each aspect is correct when woven alone correspond to the n local proofs of [25], while
the interference-freedom checks for aspects correspond to the n? checks of interference-
freedom among processes. A key point, also adapted here, is that the other processes may
change the values of shared variables, but there is no interference as long as the independent
proofs are not invalidated. The level of interleaving in shared memory systems is much finer
than for aspects: every local assertion about memory values can be invalidated by another
assignment by a different processor. The fact that the code of the aspect (the advice) is only
activated at join-points means that less stringent conditions can be used, and that modular
model checking can be used as a proof component.

The work on interference detection presented here, expanding preliminary work pre-
sented at a workshop [17], is the first definition of semantic interference for aspects that uses

@ Springer



90 Form Methods Syst Des (2010) 37: 61-92

the specification of the aspects as the interference criterion, and applies model checking to
detect interference or establish noninterference among collections of aspects. The interfer-
ence checks are performed on pairs of aspects, and the results of these pairwise checks are
sufficient to determine interference freedom for all the aspects in the library. However, as
shown in Sect. 5, to enable such incremental proofs we have to “pay” by additional incom-
pleteness.

There has been previous work on detecting whether the pointcuts of aspects match com-
mon join-points or there are overlapping introductions [9, 16]. This is important because
the semantics of weaving can be ambiguous at such points, and be the source of errors.
However, as has been shown, aspects can interfere even if there are no common join-points.
Some work has also been done in identifying potential influence by using dataflow tech-
niques showing that one aspect changes (or may change) the value of some field or variable
that is used and potentially affects the computation done by the advice of another aspect [26,
31]. Slicing techniques for aspects [2, 30, 32] can also be used for such detection. Since such
potential influence is often harmless, many false positives can result.

8 Conclusions

When given a library of aspects, two questions immediately arise: The first question is
whether each of the aspects by itself is correct, i.e., satisfies its assume-guarantee speci-
fication when woven alone into a suitable base system. The second question is whether the
guarantee of some aspect can be invalidated as a result of weaving it together with addi-
tional aspects into the same base system (then we say that there is interference among these
aspects). The current paper presents an automatic and modular way to answer the two ques-
tions above. Both the individual correctness check and the interference checks are modular,
whereas the interference-freedom detection requires only pairwise checks in order to detect
interference of any subset of aspects from the library.

Modularity of aspect verification means its independence from any concrete base system.
Thus most of the verification can be done as the library is built, and aspects are added to it,
rather than when a collection of aspects from the library is to be used in an application. When
the user would like to weave one or more aspects from the library into some base system,
the only check that should be performed is that the base system satisfies the assumptions of
all the aspects that will be added to it.

Modularity is achieved by reusing the notion of a tableau containing all behaviors that
satisfy a particular formula.

Both in verification of a single aspect, and in interference checks, the result is more
informative than just “yes” or “no”. If a check of an individual aspect fails, the model-
checker provides a counterexample, which is a possible computation of a system with this
aspect that violates the guarantee. And interference checks of a library do not only result in
stating whether or not the current library is interference-free. For each aspect we know with
which aspects it does not interfere, and also for every aspect with which an interference
exists, we know what is the cause of the interference, and in which order of weaving it
occurs. All this information can serve as usage guidelines for the developers who would like
to use aspects from the verified library. In case the library as a whole is not interference-free,
a developer might chose some interference-free subset of the library (recall that pairwise
interference-freedom of the aspects in any set is enough to guarantee interference-freedom
of the set as a whole), or decide on an appropriate weaving order of the aspects to prevent
interference.

@ Springer



Form Methods Syst Des (2010) 37: 61-92 91

As future work we plan to apply our verification method and develop effective usage
guidelines for a larger existing library of aspects (e.g., [22]). Also in the future we plan
to remove some of the restrictions in the present system, e.g., to treat strongly invasive
aspects, and shared join-points. The present version already provides an effective tool for
building provably correct reusable libraries of aspects, and for detecting semantic errors and
interference among aspects.

References

1. Abraham E, de Boer F, de Roever W, Steffen M (2005) An assertion-based proof system for multi-
threaded Java. Theor Comput Sci 331(2-3):251-290

2. Balzarotti D, D’Ursi A, Cavallaro L, Monga M (2005) Slicing Aspect] woven code. In: Proc of founda-
tions of aspect languages workshop (FOALOS)

3. Bergmans L, Aksit M (2001) Composing crosscutting concerns using composition filters. CACM 44:51-
57

4. Blundell C, Fisler K, Krishnamurthi S, Hentenryck PV (2004) Parameterized interfaces for open sys-
tem verification of product lines. In: Proc 19th IEEE international conference on automated software
engineering (ASE’04), pp 258-267

5. Common aspect proof environment (CAPE) (2008). http://www.cs.technion.ac.il/~ssdl/research/cape

6. Cimatti A, Clarke EM, Giunchiglia F, Roveri M (1999) NuSMV: a new symbolic model verifier. In:

CAV’99. Lecture notes in computer science, vol 1633. Springer, Berlin, pp 495-499. http://nusmv.itc.it

Clarke EM Jr., Grumberg O, Peled DA (1999) Model checking. MIT Press, Cambridge

Devereux B (2003) Compositional reasoning about aspects using alternating-time logic. In: Proc of foun-

dations of aspect languages workshop (FOALO3)

9. Douence R, Fradet P, Sudholt M (2004) Composition, reuse, and interaction analysis of stateful aspects.
In: Proc of 3th intl conf on aspect-oriented software development (AOSD’04). ACM, New York, pp
141-150

10. Guelev DP, Ryan MD, Schobbens PY (2004) Model-checking the preservation of temporal properties
upon feature integration. In: Proc 4th intl workshop on automated verification of critical systems (AV-
0CS’04). Electron Notes Theor Comput Sci 128(6):311-324

11. Filman RE, Elrad T, Clarke S, Aksit M (eds) (2005) Aspect-oriented software development. Addison-
Wesley, Boston

12. Goldman M, Katz S (2007) MAVEN: Modular aspect verification. In: Proc of TACAS 2007. Lecture
notes in computer science, vol 4424. Springer, Berlin, pp 308-322

13. Grumberg O, Long DE (1994) Model checking and modular verification. ACM Trans Program Lang
Syst 16(3):843-871

14. Hatcliff J, Dwyer M (2001) Using the Bandera Tool Set to model-check properties of concurrent Java
software. In: Larsen KG, Nielsen M (eds) Proc 12th int conf on concurrency theory, CONCUR’01.
Lecture notes in computer science, vol 2154. Springer, Berlin, pp 39-58

15. Havelund K, Pressburger T (2000) Model checking Java programs using Java PathFinder. Int J Softw
Tools Technol Transf (STTT) 2(4)

16. Havinga W, Nagy I, Bergmans L, Aksit M (2007) A graph-based approach to modeling and detecting
composition conflicts related to introductions. In: AOSD *07. ACM, New York, pp 85-95

17. Katz E, Katz S (2008) Incremental analysis of interference among aspects. In: FOAL "08. ACM, New
York, pp 29-38

18. Katz S (2006) Aspect categories and classes of temporal properties. Trans Aspect-Oriented Softw Dev
1:106-134. LNCS 3880

19. Katz S, Faitelson D The common aspect proof environment. Submitted for publication, 2009. See
http://www.cs.technion.ac.il/~ssdl/research/cape/index.html

20. Katz S, Sihman M (2003) Aspect validation using model checking. In: Proc of international symposium
on verification. Lecture notes in computer science, vol 2772. Springer, Berlin, pp 389411

21. Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold WG (2001) An overview of Aspect].
In: Proc ECOOP 2001. Lecture notes in computer science, vol 2072. Springer, Berlin, pp 327-353.
http://aspectj.org

22. Kienzle J, Duala-Ekoko E, Gélineau S (2009) AspectOptima: A case study on aspect dependencies and
interactions. Trans Aspect-Oriented Softw Dev 5:187-234

23. Krishnamurthi S, Fisler K (2007) Foundations of incremental aspect model-checking. ACM Trans Softw
Eng Methodol (TOSEM) 16(2)

® =~

@ Springer


http://www.cs.technion.ac.il/~ssdl/research/cape
http://nusmv.itc.it
http://www.cs.technion.ac.il/~ssdl/research/cape/index.html
http://aspectj.org

92

Form Methods Syst Des (2010) 37: 61-92

24.

25.
26.

217.
28.

29.

30.

31.

32.

Manna Z, Pnueli A (1991) The temporal logic of reactive and concurrent systems: specification. Springer,
Berlin

Owicki S, Gries D (1976) An axiomatic proof technique for parallel programs. Acta Inform 6:319-340
Rinard M, Salcianu A, Bugrara S (2004) A classification system and analysis for aspect-oriented pro-
grams. In: Proc of international conference on foundations of software engineering (FSE04)

Sereni D, de Moor O (2003) Static analysis of aspects. In: AOSD, pp 30-39

Sihman M, Katz S (2003) Superimposition and aspect-oriented programming. BCS Comput J 46(5):529—
541

Sipma HB (2003) A formal model for cross-cutting modular transition systems. In: Proc of foundations
of aspect languages workshop (FOALO3)

Storzer M, Krinke J (2003) Interference analysis for Aspect]. In: Proc of foundations of aspect languages
workshop (FOALO3)

Weston N, Taiani F, Rashid A (2007) Interaction analysis for fault-tolerance in aspect-oriented program-
ming. In: Proc workshop on methods, models, and tools for fault tolerance, MeMoT 07, pp 95-102
Zhao J (2002) Slicing aspect-oriented software. In: IEEE international workshop on programming com-
prehension, pp 251-260

@ Springer



	MAVEN: modular aspect verification and interference analysis
	Abstract
	Introduction
	Aspect-oriented programming
	Modular aspect verification
	Results

	Definitions
	LTL Tableaux
	Aspects
	Advice
	Pointcuts
	Specifications

	Weaving
	Constructing a pointcut-ready machine
	Constructing an augmented machine

	Weakly invasive aspects
	Interference among aspects
	Verification process

	Verifying aspect correctness
	Base: i = 0
	Induction step

	Interference analysis
	Proving interference freedom
	Direct interference-freedom proofs
	Feasible aspect composition
	Error analysis
	Joint weaving

	MAVEN
	Example: aspect library verification
	Aspect descriptions
	Aspect verifications
	Encrypting passwords and retrieving forgotten passwords
	Three-way interference


	Related work
	Modular aspect verification
	Checking interference among aspects

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


