Semilattices, Domains, and Computability

Dana S. Scott

University Professor Emeritus *Carnegie Mellon University* Visiting Scholar *University of California, Berkeley* Visiting Fellow *Magdalen College, Oxford, Trinity Term 2010* Visiting Lecturer *University of Edinburgh, July 2010*

Algebraic Lattices: The Prime Examples

- The *powerset* of a set.
- The lattice of *subgroups* of a group.
- The lattice of *ideals* of a ring.

What is a Lattice?	
$0 \le x \le 1$	Bounded
X≤X	Partially
$X \le y & y \le Z \Rightarrow X \le Z$	Ordered
$x \le y & y \le x \Rightarrow x = y$	Set
x∨y≤z⇔x≤z&y≤z	With sups
z≤x∧y⇔z≤x&z≤y	« With infs

What is a Semilattice? $0 \le x \le 1$ Bounded $X \leq X$ Partially $X \le y & y \le Z \implies X \le Z$ Ordered Set $x \le y & y \le x \Rightarrow x = y$ $X \lor y \le Z \Leftrightarrow X \le Z & y \le Z$ With sups

Algebraic Lattices: The Abstract Definition

Definition: An element u of a complete lattice is *finite* (or, *compact*) provided that whenever we have $U \leq \bigvee_{i \in I} x_i$, then $u \leq \bigvee_{i \in J} x_i$ for some *finite* $J \subseteq I$.

Definition: A complete lattice is *algebraic* iff every element is the sup of its finite subelements.

Note: The finite elements of the lattice of subgroups of a group are exactly the finitely generated subgroups. And the lattice is thus algebraic.

Semilattice Completion

Theorem: The finite elements of a complete lattice form a subsemilattice — provided the unit element is finite.

Definition: The *ideals* of semilattice are the subsets closed under finite sups and subelements.

Theorem: The ideals of semilattice form an algebraic lattice with a finite unit element.

Theorem: Every algebraic lattice with a finite unit element is isomorphic to the ideal lattice of its semilattice of finite elements.

Topological Connections

Theorem: Every algebraic lattice becomes a T_0 -topological space with a basis for the open sets consisting of sets $\wedge u = \{x \mid u \le x\}$ for u finite.

Theorem: The lattice of open subsets of the **Cantor Discontinuum** is an algebraic lattice with the finite elements being the compact opens.

Theorem: The *continuous functions* between algebraic lattices are exactly the functions preserving *directed sups*. They can also be characterized by the equation:

 $F(x) = \bigvee \{ F(u) \mid u \le x \& u \text{ finite} \}.$

What are Scott-Ershov Domains?

Definition: A *domain* is an algebraic lattice *minus* a finite unit; *equivalently ...*

A *domain* is any *closed subset* of an algebraic lattice; *equivalently ...*

A *domain* is the completion of a semilattice by *proper ideals*.

Note: Every algebraic lattice is a domain. (Hint: Add an extra unit element at the top.)

Theorem: Domains form a *category* with the continuous functions as the *mappings*.

Back to Semilattices!

Definition: For $\mathcal{A} = \langle A, 0, 1, \vee \rangle$ a given semilattice,

let $||\mathcal{A}||$ be the set of **proper ideals** of \mathcal{A} ; that is,

 $\|\mathcal{A}\| = \{X \subseteq A \mid 0 \in X \& 1 \notin X \& \forall a, b \in A[a, b \in X \Leftrightarrow a \lor b \in X]\}.$

Theorem: $||\mathcal{A}||$ is a domain with finite elements of the form $\forall a = \{x \in A \mid a \lor x = a\}$; if additionally, \mathcal{A} satisfies

$$\forall a, b \in A[a = 1 \text{ or } b = 1 \Leftrightarrow a \lor b = 1],$$

then $||\mathcal{A}||$ is an algebraic lattice.

Note: Intuitively 0 indicates no information and 1 too much information or an inconsistency.

The Countable Case

Theorem: The completion $||\mathcal{A}||$ of a *countable* semilattice $\mathcal{A} = \langle A, 0, 1, \vee \rangle$ can be thought of as adding *limit points* to \mathcal{A} of increasing sequences $a_0 \leq a_1 \leq a_2 \leq ... \leq a_n \leq ...$ of elements of A, where we define $\lim_{n\to\infty} a_n \leq \lim_{m\to\infty} b_m$ to mean that *each* a_n *is* \leq *some* b_m .

Note: Of course, limits prove to be sups in $||\mathcal{A}||$, and we can identify the elements of A with the limits of the constant sequences. However, from this point of view, in order to prove that $||\mathcal{A}||$ is (directed) complete, it is probably easier to relate limits to ideals.

A Universal Semilattice

Definition: Let $\mathcal{P} = \langle P, 0, 1, \vee \rangle$ be the *semilattice* of (equivalence classes of) *propositional formulae* with generators $\xi_0, \xi_1, \xi_2, \dots, \xi_n, \dots$

Note: We will use the usual notation for other propositional operators, so \mathcal{P} may also be considered a Boolean algebra.

Theorem: $||\mathcal{P}||$ as a domain is isomorphic to the domain of *proper open subsets* of the Cantor set.

Main Theorem: Every domain with a countable number of finite elements can be *isomorphically embedded* into || P ||.

Outline of a Proof

Theorem: Every *countable Boolean algebra* can be isomorphically embedded into \mathcal{P} .

Hint: It is easy to show that a finite Boolean algebra can be embedded into \mathcal{P} . And then the embedding can be continued to any finite superalgebra. Next note that a countable algebra is the union of a countable chain of finite algebras.

Theorem: Every *countable semilatice* can be isomorphically embedded into \mathcal{P} .

Hint: Every semilattice $\mathcal{A} = \langle A, 0, 1, \vee \rangle$ can be embedded into the powerset lattice of $A \setminus \{1\}$ by the mapping $\rho(a) = \{x \mid a \notin x\}$.

Theorem: If a semilattice \mathcal{A} is a subsemilattice of a semilattice \mathcal{B} , then $||\mathcal{A}||$ is a **subdomain** of $||\mathcal{B}||$.

Simplifying the Notation

(Step 1) $\langle P,0,1,\vee \rangle$ is the semilattice of *propositional* formulae with generators $\xi_0, \xi_1, \xi_2, \dots, \xi_n, \dots$.

(Step 2) \mathbb{S} is the family of all *subsemilattices* of *P*; thus $\mathbb{S} = \{A \subseteq P \mid 0, 1 \in A \otimes \forall a, b \in A \mid a \lor b \in A\}$.

Note: \mathbb{S} is an algebraic lattice with a countable

number of finite elements. (Why?)

(Step 3) For $A \in \mathbb{S}$, let $||A|| = \{ \psi(X \cap A) \mid X \in ||\mathcal{P}|| \}$.

Note: ||A|| is a subdomain of ||P|| = ||P||, and every countably based domain is isomorphic one such. The semilattice structure of ||P|| is defined by $X \lor Y = \{x \lor y \mid x \in X \& y \in Y\}$.

Gödel Numbering & Pairing

Theorem. There is a numbering of the elements of P so that all Boolean operations are *primitive recursive*.

Theorem. Under this numbering, there is a primitive recursive *pairing operation* $\ll p,q \gg$ on *P* with a recursive range where:

(i)
$$\langle 0,0 \rangle = 0$$
;
(ii) $\langle p,q \rangle = 1 \Leftrightarrow p = 1 \text{ or } q = 1$;
(iii) $\langle p_0,q_0 \rangle \lor \langle p_1,q_1 \rangle = \langle p_0 \lor p_1, q_0 \lor q_1 \rangle$;
(iv) $\langle p_0,q_0 \rangle \le \langle p_1,q_1 \rangle \Leftrightarrow p_1 = 1 \text{ or } q_1 = 1 \text{ or } [p_0 \le p_1 \& q_0 \le q_1]$.
Hint: Define Boolean injections $\sigma_0,\sigma_1: P \rightarrowtail P$ by $\sigma_0(\xi_n) = \xi_{2n}$
and $\sigma_1(\xi_n) = \xi_{2n+1}$. Then define $\langle p,q \rangle = \sigma_0(p) \lor \sigma_1(q)$.

Another Construction of ${\mathcal P}$

(Step 1) For any set S, let F(S) denote the collection of all the *finite subsets* of S.

(Step 2) F(S) may be regarded as a *vector space* over the field {0,1}, where the *zero vector*, 0, is the empty set, and where *vector addition*, +, is the symmetric difference of sets. A *basis* for the space F(S) consists of the singleton subsets.

(Step 3) Let $P = F(F(\mathbb{N}))$, and define a *bilinear multiplication* on *P* by the stipulation {s}•{t} = {s \cup t} for s,t $\in F(\mathbb{N})$. Let 1 = {0}.

Theorem: The algebra $\langle P, 0, 1, +, \cdot \rangle$ is the *free Boolean ring* (with unit) on the generators $\{\{n\}\}\$ for $n \in \mathbb{N}$. It can be made into a

semilattice by defining $x \lor y = x + y + x \cdot y$.

Note: Using $P = F(F(\mathbb{N}))$ gives us another Gödel numbering.

Computable Domains and Mappings

Definition. The *computable* elements of S are those which are *recursively enumerable* subsets of *P*.

Definition. The *computable* elements of ||A|| are those which are *recursively enumerable* subsets of *P*.

Definition. The *computable* mappings $F:||A|| \rightarrow ||B||$ are those which are continuous and where the relationship $\forall b \subseteq F(\forall a)$ between finite elements of ||A|| and ||B|| is *recursively enumerable*.

Domain Products

Definitions. (i) $X \times Y = \{ \ll p, q \gg | p \in X \& q \in Y \};$ (ii) $H = \{ \ll p, q \gg | [p = 0 \& q = 0] \text{ or } [p \neq 0 \& q \neq 0] \};$ (iii) $A \times_s B = (A \times B) \cap H.$

Lemma. (i) If $A, B \in S$, then $H, (A \times B), (A \times_s B) \in S$.

(ii) If $X, Y \in ||P||$, then $(X, Y) = \Psi(X \times Y) \in ||P||$.

Theorem. If $A, B \in S$, then $||A \times B||$ is isomorphic to the *product* of the domains ||A|| and ||B||, while $||A \times_{s} B||$ is isomorphic to the *smash product*.

Hint: Let $X = \{p \mid \ll p, 0 \gg \in Z\}$ and $Y = \{q \mid \ll 0, q \gg \in Z\}$, for any $Z \in ||A \times B||$. Then $X \in ||A||, Y \in ||B||$, and $\Psi(X \times Y) = Z$.

Domain Sums

Definition. Let $\zeta_n = \neg \xi_0 \lor \neg \xi_1 \lor \neg \xi_2 \lor ... \lor \neg \xi_{n-1} \lor \xi_n$. **Definition.**

 $A_0 + A_1 + A_2 + \dots + A_n = \{0\} \cup \bigcup_{i \le n} \{ \ll p, \zeta_i \gg | p \in A_i \}.$ Definition.

 $A_0 + A_1 + A_2 + A_2 + A_n = (A_0 + A_1 + A_2 + \dots + A_n) \cap H.$

Theorem. For $A_0, A_1, A_2, \dots, A_n \in S$, $||A_0 + A_1 + A_2 + \dots + A_n||$ is isomorphic to the *separated sum* of the domains $||A_i||$.

Theorem. For $A_0, A_1, A_2, \dots, A_n \in \mathbb{S}$, $||A_0+_cA_1+_cA_2+_c\dots+_cA_n||$ is isomorphic to the *coalesced sum* of the domains $||A_i||$.

Lifting and Dropping

Definitions. (i) $A_{\perp} = \{0\} \cup \{ \ll p, 0 \gg \lor \xi_1 \mid p \in A \}.$

(ii) $A^{\mathsf{T}} = \{1\} \cup \{ \ll p, 0 \gg \land \xi_1 \mid p \in A \}.$

Theorem. For $A \in S$, we have $A_{\perp}, A^{\intercal} \in S$, and the domain $||A_{\perp}||$ is like ||A|| but with a *new bottom element*, and $||A^{\intercal}||$ is like ||A|| but with a *new top element*.

Note: All the operations of products, sums, lifts and drops on \mathbb{S} need to be checked for continuity and computability.

Function Spaces

Theorem. Under the numbering of *P*, there is a primitive recursive operation ($p \Rightarrow q$) on *P*, defined when $p \neq 1$, such that:

- (i) $(p \Rightarrow 1) = 1$;
- (ii) $\bigvee_{i < k} (p_i \Rightarrow q_i) = 1 \Rightarrow \exists r \neq 1. \forall \{q_i | p_i \le r\} = 1$; and

(iii)
$$(r \Rightarrow s) \le \bigvee_{i < k} (p_i \Rightarrow q_i) \Leftrightarrow \bigvee_{i < k} (p_i \Rightarrow q_i) = 1 \text{ or } s \le \bigvee \{q_i \mid p_i \le r\}.$$

Definitions.

(i)
$$(A \Rightarrow B) = \{ \bigvee_{i < k} (p_i \Rightarrow q_i) | \forall i < k [p_i \in A \setminus \{1\} \& q_i \in B] \};$$

(ii) $(A \Rightarrow_{s} B) = \{0,1\} \cup \{ \bigvee_{i < k} (p_i \Rightarrow q_i) | \forall i < k [p_i \in A \setminus \{0,1\} \& q_i \in B \setminus \{0,1\}] \};$

Theorem. If $A, B \in \mathbb{S}$, then $(A \Rightarrow B), (A \Rightarrow B) \in \mathbb{S}$, and $||A \Rightarrow B||$ is isomorphic to the domain of *continuous functions* from ||A|| to ||B|| and $||A \Rightarrow B||$ gives *strict continuous functions*.

Embedding \mathbb{S} into ||P||

Note: The finite elements of \mathbb{S} are the finite subsemilattices of P, and P is the (non-finite) unit element of \mathbb{S} . The semilattice operation on \mathbb{S} is $A \lor B$.

Lemma. For finite $A, B \in \mathbb{S}$, we have

(i)
$$\bigvee_{p \in A \setminus \{1\}} (p \Rightarrow p) = \bigvee_{q \in B \setminus \{1\}} (q \Rightarrow q) \Leftrightarrow A = B$$
; and

(ii)
$$\bigvee_{\mathsf{r}\in(A\vee B)\setminus\{1\}} (\mathsf{r}\Rightarrow\mathsf{r}) = \bigvee_{\mathsf{p}\in A\setminus\{1\}} (\mathsf{p}\Rightarrow\mathsf{p}) \vee \bigvee_{\mathsf{q}\in B\setminus\{1\}} (\mathsf{q}\Rightarrow\mathsf{q})$$
.

Theorem. The domain \mathbb{S} is isomorphic to a subdomain of $||P \Rightarrow_{\mathbb{S}} P||$ by a computable embedding.

Recursive Domain Equations

Theorem. All the operations $(A \times B)$, $(A \times_{\mathbb{S}} B)$, (A+B), (A+cB), $A \perp$, A^{\top} , $(A \Rightarrow B)$, and $(A \Rightarrow_{\mathbb{S}} B)$ map \mathbb{S} to \mathbb{S} and are *continuous and computable*. Hence, so are any *compositions* of these mappings.

Note: The standard Fixed-Point Theorem can then be applied to obtain recursively defined domains.

Definition. $\mathbb{N}_{\perp} = \{0,1\} \cup \{\zeta_n \mid n \in \mathbb{N}\}.$

Theorem. $\mathbb{N}_{\perp} \in \mathbb{S}$, and $|| \mathbb{N}_{\perp}||$ is isomorphic to the *flat domain of integers*.

Note: A typical example of a recursively defined domain is given by $D = \mathbb{N}_{\perp + c} (D \Rightarrow D)_{\perp}$. This constructs a model of the λ -calculus closely related to recursive function theory.

Some Additional Examples Potentially infinite: binary sequences B = B + Bsequences of integers $S = \mathbb{N} \bot X_{S} S \bot$ labelled trees $L = \mathbb{N} \bot \mathsf{X}_{\mathsf{S}}(L \times L) \bot$ -0-0-0----0-Another lambda-calculus domain: A = given $B = B \times (A \times B)$ fixed point $C = A \times B \cong (A \times B) \times (A \times B) = C \times C$ defined & isomorphed $D = D \Rightarrow C$ fixed point $D \times D = (D \Rightarrow C) \times (D \Rightarrow C) \cong D \Rightarrow (C \times C) \cong D \Rightarrow C = D$ isomorphism $D \Rightarrow D = D \Rightarrow (D \Rightarrow C) \cong (D \times D) \Rightarrow C \cong D \Rightarrow C = D$ isomorphism

||P|| as a λ -Calculus Model

Definitions.

- (i) Id (Z) = Ψ { $\bigvee_{i < k} q_i | \forall_i < k[q_i \in Z]$ }; and
- (ii) $F(X) = \mathbf{Id} (\{q \mid (p \Rightarrow q) \in F \& p \in X\}); and$
- (iii) $\lambda X \cdot \Phi(X) = \mathbf{Id} (\{(p \Rightarrow q) | q \in \Phi(\psi p) \& p \neq 1\}), \text{ where }$

 $F, X \in ||P||$ and $\Phi : ||P|| \rightarrow ||P||$ is continuous.

Note: It is possible that Id(Z) = P, if Z is inconsistent. However, for F, X, Φ as above, both F(X) and $\lambda X.\Phi(X)$ are consistent.

Equilogical Spaces

Remember: • The space ||P|| is not only universal for domains, but it contains as subspaces all countably based T₀-spaces.

• Moreover, by passing to partial equivalence relations (PERs) and equivalence-preserving continuous mappings, we obtain a cartesian closed category (and more).

• It contains the two previous categories and has an intrinsic notion of computable function and computable element. (But a certain subcategory may be better.)

• In this way we have a semantics for a notion of computability at higher types.

Martin-Löf Type Theory

Definition. A *family of types* consists of a PER \mathcal{A} and a mapping \mathcal{B} : $||P|| \rightarrow$ PER, where for all $X_0, X_1 \in ||P||$ we have

 $X_0 \mathcal{A} X_1 \Rightarrow \mathcal{B}(X_0) = \mathcal{B}(X_1).$

Definition. A *product* of a family of types is the PER defined by: $F_0(\prod X: \mathcal{A}. \mathcal{B}(X)) F_1 \Leftrightarrow \forall X_0, X_1[X_0 \mathcal{A} X_1 \Rightarrow F_0(X_0) \mathcal{B}(X_0) F_1(X_1)].$

Definition. A *sum* of a family of types is the PER defined by:

 $Z_0\left(\sum X:\mathcal{A}.\mathcal{B}(X)\right)Z_1 \Leftrightarrow \exists X_0,X_1,Y_0,Y_1[X_0 \mathcal{A}X_1 \& Y_0 \mathcal{B}(X_0) Y_1 \&$

 $Z_0 = (X_0, Y_0) \& Z_1 = (X_1, Y_1)$].

Note: It must be proved that these definitions actually do produce PERs.

Systems of Dependent Types

Theorem. Given families of types where always $X_0 \mathcal{A} X_1 \Rightarrow \mathcal{B}(X_0) = \mathcal{B}(X_1)$ and $X_0 \mathcal{A} X_1 \otimes Y_0 \mathcal{B}(X_0) Y_1 \Rightarrow \mathcal{C}(X_0, Y_0) = \mathcal{C}(X_1, Y_1)$ and $X_0 \mathcal{A} X_1 \otimes Y_0 \mathcal{B}(X_0) Y_1 \otimes Z_0 \mathcal{C}(X_0, Y_0) Z_1 \Rightarrow \mathcal{D}(X_0, Y_0, Z_0) = \mathcal{D}(X_1, Y_1, Z_1),$ then this *iterated* products of sums of ... is a PER: $\prod X: \mathcal{A}. \sum Y: \mathcal{B}(X). \prod Z: \mathcal{C}(X,Y). \mathcal{D}(X,Y,Z).$ **Note:** Of course, properties of sums and products have to be established showing they follow

the usual rules of type theory.

Extensional Identity Types

Definition. Given a PER \mathcal{A} we define: $U \operatorname{Id}_{\mathcal{A}} (X,Y) V \Leftrightarrow U \mathcal{A} X \mathcal{A} Y \mathcal{A} V.$

Proposition. Given a PER \mathcal{A} , then $Id_{\mathcal{A}}(X,Y)$ is a PER and $X_0 \mathcal{A} X_1 \otimes Y_0 \mathcal{A} Y_1 \Rightarrow Id_{\mathcal{A}}(X_0,Y_0) = Id_{\mathcal{A}}(X_1,Y_1).$

Example: In case $F(\prod X:A, \prod Y:A, A)F$, we can regard F as a binary operation of type A. Then, if the following type is inhabited, we can say F is an associative operation:

 $\prod X: \mathcal{A}. \prod Y: \mathcal{A}. \prod Z: \mathcal{A}. \operatorname{Id}_{\mathcal{A}} (F(F(X)(Y))(Z), F(X)(F(Y)(Z))).$

Why Domain Theory?

The aim of Domain Theory is:

- (a) To provide one convenient category having many familiar examples;
- (b) To permit some new space constructions, including function spaces;
- (c) To allow for the solution of recursive domain equations, including for the λ -calculus; and
- (d) To give one sound basis for some notions of higher-type computability.

Why Semilattices?

Semilattice theory:

- (a) Has a very elementary definition;
- (b) Has a universal space with very easy computable structure;
- (c) Has a very direct way to pass to completions; and
- (d) Has a category construction needing a minimum of set theory and abstract algebra.

