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Algebraic Lattices:
The Prime Examples

• The powerset of a set.
   
• The lattice of subgroups of a group.
 
• The lattice of ideals of a ring.
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What is a Lattice?

0 ≤ x ≤ 1
x ≤ x 
x ≤ y & y ≤ z ⇒ x ≤ z
x ≤ y & y ≤ x ⇒ x = y
x ∨ y ≤ z ⇔ x ≤ z & y ≤ z
z ≤  x ∧ y ⇔ z ≤ x & z ≤ y

Bounded

Partially 
Ordered
Set

With sups
 &  

With infs
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What is a Semilattice?

0 ≤ x ≤ 1
x ≤ x 
x ≤ y & y ≤ z ⇒ x ≤ z
x ≤ y & y ≤ x ⇒ x = y
x ∨ y ≤ z ⇔ x ≤ z & y ≤ z

Bounded

Partially 
Ordered
Set

With sups
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What is a Complete Semiattice?

∨i∈Ixi  ≤ y ⇔ (∀i∈I) xi  ≤ y

Note: A complete semilattice is a 
complete lattice: 

∧i∈Ixi = ∨{y|(∀i∈I) y  ≤ xi }

What is a Complete Lattice?
y ≤ ∧i∈Ixi ⇔ (∀i∈I) y  ≤ xi
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The Equational Axiomatization
of Semilattices

Definition: x ≤ y ⇔ x  ∨ y =  y 

0 ∨ x = x        1 ∨ x = 1       x  ∨ x = x
x  ∨ y =  y ∨ x 

x ∨ (y ∨ z) = (x ∨ y) ∨  z
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Algebraic Lattices:
The Abstract Definition

Definition: An element u of a complete lattice is 

Definition: A complete lattice is algebraic iff every 
element is the sup of its finite subelements.

Note: The finite elements of the lattice of subgroups of 
a group are exactly the finitely generated subgroups.  

And the lattice is thus algebraic.

finite (or, compact ) provided that whenever we have 
u   ≤ ∨

i∈I
x
i
, then u    ≤ ∨

i∈J
x
i
 for some finite J⊆I.
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Semilattice Completion
Theorem: The finite elements of a complete 
lattice form a subsemilattice — provided the unit 
element is finite.

Definition: The ideals of semilattice are the 
subsets closed under finite sups and subelements.

Theorem: The ideals of semilattice form an 
algebraic lattice with a finite unit element.

Theorem: Every algebraic lattice with a finite unit 
element is isomorphic to the ideal lattice of its 
semilattice of finite elements.
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Topological Connections 
Theorem: Every algebraic lattice becomes a 
T0-topological space with a basis for the open sets 
consisting of sets u = { x | u ≤ x } for u finite.

Theorem: The lattice of open subsets of the Cantor 
Discontinuum is an algebraic lattice with the finite 
elements being the compact opens.

Theorem: The continuous functions between 
algebraic lattices are exactly the functions preserving 
directed sups.  They can also be characterized by the 
equation:

F(x) = ∨{ F(u) | u ≤ x & u finite}.
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What are Scott-Ershov Domains?
Definition:  A domain is an algebraic lattice minus 
a finite unit; equivalently ...
   

A domain is any closed subset of an algebraic 
lattice; equivalently ...
   

A domain is the completion of a semilattice by 
proper ideals.

Note: Every algebraic lattice is a domain. 
(Hint: Add an extra unit element at the top.)

Theorem: Domains form a category with the 
continuous functions as the mappings.
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Back to Semilattices!
Definition: For A	 =〈 A,0,1,∨ 〉 a given semilattice, 

let ||	 A	 || be the set of proper ideals of A; that is, 

||	 A	 || = {X ⊆ A | 0 ∈ X & 1∉ X & ∀a,b ∈ A[a,b ∈ X ⇔ a∨ b ∈ X]}.

Theorem: ||	 A	 || is a domain with finite elements of the form
a = {x ∈ A | a ∨ x = a }; if additionally,	 A	 satisfies

             ∀a,b ∈ A[a = 1  or  b = 1 ⇔ a ∨ b = 1],

then ||	 A	 || is an algebraic lattice.

Note: Intuitively 0 indicates no information and 
1 too much information or an inconsistency.
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The Countable Case
Theorem: The completion || A || of a countable semilattice 

A	 =〈 A,0,1,∨ 〉 can be thought of as adding limit points to 

A of increasing sequences a0 ≤ a1 ≤ a2 ≤ ... ≤ an ≤ ... of 

elements of A, where we define  lim n∞ an ≤ lim m∞ bm to

mean that each an  is ≤ some bm. 

Note: Of course, limits prove to be sups in || A ||, and 
we can identify the elements of A with the limits of 
the constant sequences.  However, from this point of 
view, in order to prove that || A || is (directed) complete, 
it is probably easier to relate limits to ideals.
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A Universal Semilattice
Definition: Let P	 =〈 P,0,1,∨ 〉 be the semilattice of 

Theorem: ||	 P	 || as a domain is isomorphic to the 
domain of proper open subsets of the Cantor set.

Note: We will use the usual notation for other propositional 
operators, so P may also be considered a Boolean algebra.

(equivalence classes of) propositional formulae with
generators ξ0, ξ1, ξ2, ... , ξn, ... .

Main Theorem: Every domain with a countable 
number of finite elements can be 

isomorphically embedded into ||	 P	 ||.
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Outline of a Proof
Theorem: Every countable Boolean algebra 

can be isomorphically embedded into P.	 
Hint: It is easy to show that a finite Boolean algebra can be 
embedded into P.  And then the embedding can be continued 

to any finite superalgebra.  Next note that a countable 
algebra is the union of a countable chain of finite algebras. 

Theorem: Every countable semilatice can 
be isomorphically embedded into P.	 

Hint: Every semilattice A	 =〈 A,0,1,∨ 〉 can be embedded into 
the powerset lattice of A\{1} by the mapping ρ(a) = {x | a h x }.

Theorem: If a semilattice A is a subsemilattice of 
a semilattice B, then ||	 A	 || is a subdomain of ||	 B	 ||.	 
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Simplifying the Notation
(Step 1) 〈 P,0,1,∨ 〉 is the semilattice of propositional 

formulae with generators ξ0, ξ1, ξ2, ... , ξn, ... .

(Step 2) S is the family of all subsemilattices of P ; thus

           S = {A ⊆ P | 0,1 ∈ A & ∀a,b ∈ A[a∨ b ∈ A]}.
Note: S is an algebraic lattice with a countable 

number of finite elements.  (Why?)
(Step 3) For A ∈ S, let ||	 A	 || ={(X ∩ A) | X ∈ ||	 P	 || }.
Note: ||A|| is a subdomain of || P || = || P ||, and every countably 
based domain is isomorphic one such.  The semilattice structure 
of || P || is defined by X∨Y = {x ∨  y | x ∈ X & y ∈ Y}.
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Gödel Numbering & Pairing
Theorem.  There is a numbering of the elements of P so that 
all Boolean operations are primitive recursive. 

Hint: Define Boolean injections σ0	 ,σ1: P ↣P by σ0(ξn) = ξ2n 
and σ1(ξn) = ξ2n+1.  Then define ≪p,q≫ = σ0(p) ∨ σ1(q).

Theorem.  Under this numbering, there is a primitive recursive 
pairing operation ≪p,q≫ on P with a recursive range where:

(i)  ≪0,0≫= 0;
    

(ii) ≪p,q≫ = 1  ⇔ p	  = 1 or q	  = 1;

(iii) ≪p0,q0≫ ∨≪p1,q1≫ = ≪p0 ∨ p1, q0  ∨ q1≫ ;

(iv) ≪p0,q0≫ ≤≪p1,q1≫  ⇔ p1	  = 1 or q1  = 1 or [p0	 ≤	 p1 & q0	  ≤	 q1].
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Another Construction of P
(Step 1) For any set S, let F(S) denote the collection of all the 
finite subsets of S.

(Step 2) F(S) may be regarded as a vector space over the field  
{0,1}, where the zero vector, 0, is the empty set, and where 
vector addition, +, is the symmetric difference of sets.  
A basis for the space F(S) consists of the singleton subsets.

(Step 3) Let P = F(F(ℕ)), and define a bilinear multiplication 
on P by the stipulation {s} • {t} = {s ∪ t} for s,t ∈ F(ℕ).  Let 1 = {0}.

Theorem: The algebra 〈 P,0,1,+, •〉is the free Boolean ring 
(with unit) on the generators {{n}}  for n ∈ ℕ.  It can be made into a 

semilattice by defining x ∨  y = x + y + x•y.

Note: Using P = F(F(ℕ)) gives us another Gödel numbering.  
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Computable Domains and Mappings

Definition. The computable elements of S are those

which are recursively enumerable subsets of P.

Definition. The computable elements of ||	 A	 || are those
which are recursively enumerable subsets of P.

Definition. The computable mappings F:||	 A	 ||||	 B	 || 
are those which are continuous and where the 
relationship b ⊆ F(a) between finite elements of 
||	 A	 || and ||	 B	 || is recursively enumerable.
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Definitions.  (i)  X x Y = {≪p,q≫ | p ∈ X &  q ∈ Y};

Domain Products

Lemma.  (i) If A, B ∈ S, then H, (A x B), (A xs B) ∈ S.

Hint: Let X = {p | ≪p,0≫ ∈ Z } and Y = {q | ≪0,q≫ ∈ Z }, for any

Z ∈ ||	 A x B	 ||.  Then X ∈ ||	 A	 ||, Y ∈ ||	 B	 ||, and (X x Y ) = Z.

(ii)  H = {≪p,q≫ | [p	  = 0 & q	  = 0] or [p	  ≠ 0 & q	  ≠ 0]};
(iii)  A xs B = (A x B) ∩ H.

(ii)  If X, Y ∈ ||	 P	 || , then (X, Y ) = (X x Y ) ∈ ||	 P	 ||.

Theorem.  If A, B ∈ S, then ||	 A x B	 || is isomorphic to the 
product of the domains ||	 A || and ||	 B	 ||, while ||	 A xs B	 || is 
isomorphic to the smash product.
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Definition. Let  ζn = ¬ξ0 ∨ ¬ξ1 ∨ ¬ξ2 ∨ ... ∨ ¬ξn-1 ∨ ξn.

Domain Sums

Theorem.  For A0 , A1, A2, ... , An ∈ S, ||A0+ A1 + A2 + ... + An||

Definition. 
       A0 + A1 + A2 + ... + An  = {0}∪ ∪i ≤ n{≪p, ζi≫ | p ∈ Ai }.
Definition. 
   A0 +c A1 +c A2 +c ... +c An  = (A0 + A1 + A2 + ... + An) ∩ H.

 is isomorphic to the separated sum of the domains ||Ai||. 

Theorem.  For A0 , A1, A2, ... , An ∈ S, ||A0+cA1+cA2+c ... +cAn||
 is isomorphic to the coalesced sum of the domains ||Ai||. 
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Lifting and Dropping

Definitions. (i)  A⊥     = {0}∪ {≪p, 0≫	 ∨ ξ1 | p ∈ A }.

  (ii)  AT    = {1}∪ {≪p, 0≫	 ∧ ξ1 | p ∈ A }.

Theorem.  For A ∈ S, we have A⊥, AT ∈ S, and the
domain ||	 A⊥ || is like ||	 A|| but with a new bottom element,
and ||	 AT || is like ||	 A|| but with a new top element.

Note: All the operations of products, sums, lifts 
and drops on S need to be checked for 

continuity and computability.
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Function Spaces
Theorem.  Under the numbering of P, there is a primitive 
recursive operation (p⇒q) on P, defined when p ≠ 1, such that:

(i)   ( p⇒1) = 1 ;

(ii)   ∨i < k ( pi⇒qi) = 1 ⇒ ∃r ≠ 1. ∨{qi | pi	 ≤	 r} = 1 ; and

(iii)  (r⇒s) ≤ ∨i < k ( pi⇒qi)  ⇔ ∨i < k ( pi⇒qi) = 1 or s ≤ ∨{qi | pi	 ≤	 r}.

Definitions.  
    (i)    ( A ⇒ B ) = {∨i < k ( pi⇒qi) | ∀i < k [ pi ∈ A\{1} &  qi ∈ B ]};

(ii)  ( A ⇒s B ) = {0,1} ∪{∨i < k ( pi⇒qi) | ∀i < k [ pi ∈ A\{0,1} &  qi ∈ B\{0,1} ]};

Theorem.  If A, B ∈ S, then ( A ⇒ B ), ( A ⇒s B ) ∈ S, and ||	 A ⇒ B	 || 
is isomorphic to the domain of continuous functions from
||	 A 	 || to ||	  B	 || and ||	 A ⇒ s B	 || gives strict continuous functions.
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Embedding S into ||	  P	 ||

Lemma.  For finite A, B ∈ S, we have
(i)   ∨p ∈ A\{1} ( p⇒p)  = ∨q ∈ B\{1} ( q⇒q) ⇔ A = B ; and

Note: The finite elements of S are the finite subsemilattices
of P, and P is the (non-finite) unit element of S.

The semilattice operation on S is A ∨ B.

Theorem.  The domain S is isomorphic to a subdomain
of ||	 P ⇒ s P	 || by a computable embedding.

(ii)   ∨r ∈ ( A ∨ B )\{1} ( r⇒r)  = ∨p ∈ A\{1} ( p⇒p) ∨ ∨q ∈ B\{1} ( q⇒q) .
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Recursive Domain Equations

Note: A typical example of a recursively defined domain is given 
by D = ℕ⊥ +c ( D ⇒ D)⊥.  This constructs a model of the λ-calculus 

Theorem.  All the operations (A x B), (A xs B), (A + B), (A +c B),
A⊥, AT, ( A ⇒ B ), and ( A ⇒s B ) map  S to S and are continuous 

and computable.  Hence, so are any compositions of these 
mappings.  

closely related to recursive function theory.

Note: The standard Fixed-Point Theorem can then be applied 
to obtain recursively defined domains.

Definition.   ℕ⊥     = {0,1}∪ {ζn | n  ∈  ℕ }.
Theorem.  ℕ⊥ ∈ S, and || ℕ⊥|| is isomorphic to the flat domain
of integers.
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Some Additional Examples

S = ℕ⊥ xs S⊥

Potentially infinite:

B = B + B

A = given
B = B x (A x B)  fixed point

C = A x B ≅ (A x B)x(A x B) = C x C defined & isomorphed

D = D ⇒ C fixed point

D x D = (D ⇒ C) x (D ⇒ C) ≅ D ⇒ (C x C) ≅ D ⇒ C = D isomorphism

D ⇒ D = D ⇒ (D ⇒ C) ≅ (D x D )⇒ C ≅ D ⇒ C = D isomorphism

L = ℕ⊥ xs (L x L)⊥ labelled trees

binary sequences

sequences of integers

Another lambda-calculus domain:
–o––––––o–o–o––––––o–
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||	  P	 || as a λ-Calculus Model
Definitions.  

(i)     Id (Z ) = {∨i < k  qi | ∀i < k [ qi   ∈   Z ]}; and
     

(ii)    F(X ) = Id ({q | ( p ⇒q )   ∈  F &   p   ∈   X }); and
     

(iii)    λX.Φ( X) = Id ({( p ⇒q ) |  q  ∈   Φ( p ) &   p ≠ 1 }) , where

     F, X   ∈ ||	  P	 || and Φ : ||	  P	 ||||	  P	 || is continuous.

Note: It is possible that Id (Z ) = P, if Z is inconsistent.  
However, for F, X, Φ as above, both
F(X ) and λX.Φ( X) are consistent. 
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Equilogical Spaces
Remember: • The space ||	 P 	 || is not only universal
for domains, but it contains as subspaces all countably 
based T0-spaces.  
     

• Moreover, by passing to partial equivalence relations 
(PERs) and equivalence-preserving continuous mappings, 
we obtain a cartesian closed category (and more). 
     

• It contains the two previous categories and has an 
intrinsic notion of computable function and computable 
element.  (But a certain subcategory may be better.)
     

• In this way we have a semantics for a notion of 
computability at higher types.
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Martin-Löf Type Theory
Definition. A family of types consists of a PER A and a
mapping B : ||P ||PER, where for all X0, X1 ∈ ||P || we have

X0 A X1 ⇒ B(X0) = B(X1).

Definition. A product of a family of types is the PER defined by:
    

F0 ( ∏ X:A. B(X)) F1  ⇔  ∀ X0, X1[X0 A X1 ⇒ F0(X0) B(X0) F1(X1) ].

Definition. A sum of a family of types is the PER defined by:
    

Z0 ( ∑ X:A. B(X)) Z1  ⇔ ∃ X0,X1, Y0, Y1[ X0 A X1 & Y0 B(X0) Y1 & 

Z0 = ( X0, Y0)  &  Z1 = ( X1, Y1) ].
Note: It must be proved that these definitions 

actually do produce PERs.
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Systems of Dependent Types
Theorem.  Given families of types where always
    

X0 A X1 ⇒ B(X0) = B(X1) and

X0 A X1 & Y0 B(X0) Y1 ⇒ C(X0,Y0) = C(X1,Y1) and

X0 A X1 & Y0 B(X0) Y1 & Z0 C(X0,Y0) Z1 ⇒ D(X0,Y0,Z0) = D(X1,Y1,Z1),
      

then this iterated products of sums of ... is a PER:
    

∏ X:A. ∑ Y: B(X). ∏ Z: C(X,Y). D(X,Y,Z).

Note: Of course, properties of sums and products 
have to be established showing they follow 

the usual rules of type theory.
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Extensional Identity Types
Definition.  Given a PER A we define:

U IdA (X,Y) V ⇔ U A X A Y A V .

Proposition.  Given a PER A, then IdA (X,Y) is a PER and
X0 A X1 & Y0 A Y1 ⇒ IdA (X0,Y0) = IdA (X1,Y1).

Example: In case F (∏ X:A. ∏ Y:A. A) F, we can 
regard F as a binary operation of type A.  Then, if 
the following type is inhabited, we can say F is an 
associative operation:
    

∏ X:A. ∏ Y:A. ∏ Z:A. IdA ( F(F(X)(Y))(Z), F(X)(F(Y)(Z)) ).
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Why Domain Theory?
The aim of Domain Theory is:

(a) To provide one convenient category having
 many familiar examples;

(b) To permit some new space constructions, 
 including function spaces;

(c) To allow for the solution of recursive domain 
 equations, including for the λ-calculus; and

(d) To give one sound basis for some notions of
    higher-type computability. 
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Why Semilattices?
Semilattice theory:

(a) Has a very elementary definition;

(b) Has a universal space with very easy
 computable structure;

(c) Has a very direct way to pass to
 completions; and

(d) Has a category construction needing a
 minimum of set theory and abstract algebra.
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.The End,

dana.scott@cs.cmu.edu
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