
Generating High-Quality Tests for Boolean
Circuits by Treating Tests as Proof Encoding?

Eugene Goldberg and Panagiotis Manolios

Northeastern University, USA {eigold,pete}@ccs.neu.edu

Abstract. We consider the problem of test generation for Boolean com-
binational circuits. We use a novel approach based on the idea of treating
tests as a proof encoding rather than as a sample of the search space. In
our approach, a set of tests is complete for a circuit N , and a property
p, if it “encodes” a formal proof that N satisfies p. For a combinational
circuit of k inputs, the cardinality of such a complete set of tests may be
exponentially smaller than 2k. In particular, if there is a short resolution
proof, then a small complete set of tests also exists. We show how to
use the idea of treating tests as a proof encoding to directly generate
high-quality tests. We do this by generating tests that encode manda-
tory fragments of any resolution proof. Preliminary experimental results
show the promise of our approach.

1 Introduction

Although formal verification has made significant progress, simulation, due its
scalability, is still the main workhorse of functional verification. An obvious draw-
back of simulation is that it only samples the search space and so may miss some
bugs. Making simulation complete (i.e guaranteeing the lack of bugs) at the same
time keeping the number of tests reasonably small is a very exciting goal.

Recent results [9] show that finding small complete test sets is actually pos-
sible. These results are based on the idea of treating a test set as an encoding
of a formal proof (that the required property holds) rather than a sample of the
search space. We will refer to this concept as Treating Tests as a Proof Encod-
ing (TTPE). In particular, it was shown that to encode a resolution proof of k
resolutions one needs at most 2k tests. Importantly, a test set encoding a formal
proof is complete (in the sense that no bug can be missed) and may be very
small. Such a test set may be exponentially smaller than a trivial complete test
set of 2n tests (where n is the number of inputs of N).

In this paper, we use TTPE for verification of combinational circuits. The
generic problem here is to show that a single-output circuit N always evaluates
to 0 or to find a bug, an input assignment x such that N(x)=1. In principle,
TTPE can be used for both proving that N ≡ 0 and for showing that N is buggy
by generating a sequence of tests until we either encode a proof or find a bug. In
more detail, suppose we generated tests x1, . . ., xk−1, but they do not encode a

? This research was funded in part by NASA Cooperative Agreement NNX08AE37A.



proof and they have not found a bug. We generate a new test, xk, and check if
N(xk) = 1. If so, N is buggy. Otherwise, we check if the set {x1, . . . ,xk} encodes
a resolution proof. If it does, then N ≡ 0. Otherwise, we continue generating
tests. This is a simplified overview of the procedure ProofByTesting described
in Section 5.

An obvious question is: when does a set of tests encode a resolution proof?
The key idea is to use tests to enable certain resolution steps. Thus, a set of
tests encodes a resolution proof if the set of resolution steps allowed by the tests
includes all the steps of the proof. A full account can be found in Section 4.

Unfortunately, no efficient procedure for checking if a set of tests encodes a
resolution proof is currently known. However, we develop an efficient variation
of ProofByTesting meant only for showing that N is buggy. Generation of high-
quality tests for checking if N has a bug (i.e., evaluates to 1 for some test) is the
problem we address in this paper. Our approach is based on the idea of generating
tests that encode “mandatory” fragments of a resolution proof. Given a CNF
formula F , a particular class of complete assignments called boundary points of
F specify mandatory resolutions of a proof that F is unsatisfiable [10]. In this
paper, we show that boundary points can be used for generation of high quality
tests.

The idea of extracting tests from boundary points is the first contribution
of our paper. The second contribution is showing that TTPE can be used for
building good tests indirectly, i.e., without generating an explicit proof. Our
third contribution is in giving experimental evidence that tests extracted from
boundary points have high quality.

Given a CNF formula F (v1, . . . , vn), a lit(vi)-boundary point p is an unsat-
isfying assignment such that all clauses of F falsified by p share the same literal
lit(vi) (where lit(vi) is vi or vi). Importantly, a lit(vi)-boundary point p man-
dates a resolution on variable vi [10] (any proof that F is unsatisfiable has to
have a resolution on vi eliminating p as a lit(vi)-boundary point). So one can
use boundary points to encode mandatory fragments of a resolution proof that
the design property specified by F holds.

It is an open question whether a resolution proof can be encoded by boundary
points alone (i.e., whether resolutions mandated by boundary points always
constitute a resolution proof). It was shown experimentally in [10] that for well
structured proofs, the share of resolutions mandated by boundary points is high
(90-100%). This implies that by generating boundary points one has a good
chance to encode a proof or a large part of it.

Studying the relation of tests and proofs in propositional logic is important
for at least three reasons. First, propositional logic plays an outstanding role in
hardware verification. Second, it is also used in software verification. The state-
of-the art SMT-solvers are based on propositional SAT-solvers. The latter are
also extensively used in software verification systems like Alloy [1], CBMC [2],
Java pathfinder [3]. Third, in many cases testing works well in verification of
sequential circuits and programs. This implies that the TTPE approach may be
applicable to logics more complex than propositional.

2



Since the method we introduce in this paper is heavily based on the TTPE
approach, we describe the latter in Sections 2-5. We use a simple example to
explain our definitions. Then in Section 6 we describe how tests are extracted
from boundary points. In Section 7, we relate our approach with hardware testing
based on the stuck-at fault model and with mutation-based testing. Finally, we
give some experimental results and make conclusions.

2 Example

In this section, we introduce an example we will use extensively throughout the
paper. Figure 1 shows a circuit called miter that is meant for equivalence checking
of combinational circuits M ′ and M ′′. In a miter, circuits M ′ and M ′′ share the
same set of inputs. Besides, the outputs of M ′ and M ′′ feed an XOR gate (in our
example, it is gate G6). The circuits M ′ and M ′′ are functionally inequivalent
iff their miter evaluates to 1 (in this case there is an input assignment for which
M ′ and M ′′ produce different values and so the XOR gate evaluates to 1).

Fig. 1. Miter N of functionally
equivalent circuits M ′ and M ′′

The miter N shown in Figure 1, checks
for equivalence circuits M ′ and M ′′ imple-
menting the expressions (x1 ∨ x2) ∧ x3 and
(x1 ∧ x3) ∨ (x2 ∧ x3) respectively. Since M ′

and M ′′ are functionally equivalent, N al-
ways evaluates to 0. The conventional wis-
dom is that to prove that N implements con-
stant 0 by simulation one has to generate
23 = 8 tests. As we show later, for the cir-
cuit N of Figure 1 there is a complete test set
of only 5 tests. This test set is complete in
the sense it encodes a resolution proof that a
CNF formula F specifying the query “Does
N(x) evaluate to 1 for some x?” is unsatisfi-
able. These 5 tests are extracted from bound-
ary points of F .

3 Some Basic Definitions

In this paper, we specify combinational cir-
cuits by CNF formulas. This section gives
some relevant definitions.

Definition 1. A literal lit(vi) of a Boolean
variable vi is either vi itself (the positive literal of vi) or the negation of vi
denoted as vi (the negative literal of vi).

Definition 2. A clause is the disjunction of literals where no two (or more)
literals of the same variable can appear. A clause consisting of only one literal is

3



called unit. A CNF formula is the conjunction of clauses. We will also view
a CNF formula as a set of clauses.

Definition 3. Given a CNF formula F (v1, . . . , vn), a complete assignment
(also called a point) is a mapping {v1, . . . , vn} → {0, 1}. Given a complete as-
signment p and a clause C, denote by C(p) the value of C when its variables are
assigned as in p. A clause C is satisfied (respectively falsified) by a complete
assignment p, if C(p) = 1 (respectively C(p) = 0).

Definition 4. Given a CNF formula F , a satisfying assignment p is a
complete assignment satisfying every clause of F . The satisfiability problem
(SAT) is to find a satisfying assignment for F or to prove that it does not exist.

4 Encoding Resolution Proofs

In this section, we describe how a circuit is represented by a CNF formula and
recall the basics of the resolution proof system. Then we describe how one can
encode a resolution proof by complete assignments. (This is done as in [9] but
without using the machinery of stable sets of points.) Finally, we define the
notion of proof encoding in terms of tests.

4.1 CNF representation of a circuit

Typically, finding out if a property of a combinational circuit M holds reduces
to checking if a single-output circuit (derived from M) implements constant 0.
(For instance, proving that combinational circuits M and M ′ are functionally
equivalent comes down to checking if the miter N of M ′ and M ′′ always evaluates
to 0, see Section 2).

Let N be a single-output circuit of gates G1, . . . , Gm where the output of Gm
is also the output of N . Let the inputs of N , the outputs of gates of G1, . . . , Gm−1

and the output of Gm be denoted by X = {x1, . . . , xr}, Y = {y1, . . . , ym−1} and
z respectively. Let FN be a CNF formula specifying N that is obtained from
F using regular Tseitsin’s transformations [13]. Namely, FN = FG1 ∧ . . . ∧ FGm

where FGi is a CNF formula satisfied (respectively falsified) by the consistent
(respectively the inconsistent) assignments to the pins of Gi.

Example 1. For the circuit N of Figure 1, X = {x1, x2, x3}, Y = {y1, . . . , y5}
(where yi specifies the output of gate Gi, i = 1, . . . , 5) and variable z specifies the
output of G6. The formula FN specifying N can be represented as FG1∧. . .∧FG6 .
Formula FG1 , for instance, specifies the OR gate G1 and is equal to (x1∨x2∨y1)
∧ (x1 ∨ y1) ∧ (x2 ∨ y1). For example, clause (x1 ∨ x2 ∨ y1) is falsified by the
inconsistent assignment x1 = 0, x2 = 0, y1 = 1 and so is FG1 .

The problem of finding an input assignment that sets the output of N to 1
comes down to checking the satisfiability of the formula F (X,Y, z) = FN ∧ z. A
complete assignment p to the variables of F can be represented as (x,y,z∗) where

4



x,y,z∗ are assignments to X,Y and z respectively. The part of p consisting of
the assignments to the input variables (i.e., the part x) is called a test. We will
denote it by inp(p). If an assignment p satisfies all the clauses of FN (but may
falsify the unit clause z of F ), the part (y,z∗) of p is called the correct execution
trace for the test x=inp(p).

In general, a complete assignment p falsifies clauses of FN . In such a case,
(y,z∗) can be interpreted as a faulty execution trace. This means that at least
one gate Gi of N produces the value that is different from the one implied by
the input values of Gi.

Example 2. Let p=(x1 =0, x2 =1, x3 =1, y1 =1, y2 =1, y3 =0, y4 =1, y5 =1, z=0)
a complete assignment to the variables of FN specifying circuit N of Figure 1.
The test x corresponding to p is inp(p)=(x1 =0, x2 =1, x3 =1). Since p assigns
consistent values to all 6 gates of N it satisfies all the clauses of FN (the entire
formula FN is given below in Example 3). So, in this case, (y1 = 1, y2 = 1, y3 =
0, y4 =1, y5 =1, z=0) is the correct execution trace for the test x.

Now, let p′=(x1 = 0, x2 = 1, x3 = 1, y1 = 0, y2 = 0, y3 = 0, y4 = 1, y5 = 1, z= 1).
Point p′ assigns consistent values to all the gates of N but gate G1 (p′ falsifies
the clause (x2 ∨ y1) of FG1 given in Example 1). Point p′ specifies the same test
x as above and a faulty execution trace (y1 =0, y2 =0, y3 =0, y4 =1, y5 =1, z=1).

4.2 Resolution proofs

In this subsection, we recall the basics of the resolution proof system for propo-
sitional logic [6].

Resolution is a sound and complete proof system that has only one derivation
rule called resolution.

Definition 5. Let clauses C ′,C ′′ have the opposite literals of variable vi (and no
opposite literals of other variables). The resolvent C of C ′ and C ′′ on variable
vi is the clause with all the literals of C ′ and C ′′ but those of vi. The clause C
is said to be obtained by a resolution operation on vi. C ′ and C ′′ are called
the parent clauses.

Definition 6. ([6]) Let F be an unsatisfiable formula. Let {R1, . . . , Rk} be a set
of clauses such that

– each clause Ri is obtained by a resolution operation where a parent clause is
either a clause of F or Rj, j < i;

– clauses Ri are numbered in the derivation order;
– Rk is an empty clause.

Then the set of k resolutions that produced the resolvents R1, . . . , Rk is called a
resolution proof that F is unsatisfiable.

Example 3. Here we describe a resolution proof for the unsatisfiable CNF for-
mula F = FN ∨z where FN = FG1 ∧ . . .∧FG6 specifies the circuit N of Figure 1.
To describe subformulas FGi

one needs clauses Ci, i = 1, . . . , 19 given below. Let
C20 denote the unit clause z. Then F = C1 ∧ . . . ∧ C20.

5



FG1 = C1 ∧ C2 ∧ C3, C1 = x1 ∨ x2 ∨ y1, C2 = x1 ∨ y1,C3 = x2 ∨ y1.
FG2 = C4 ∧ C5 ∧ C6, C4 = y1 ∨ x3 ∨ y2, C5 = y1 ∨ y2, C6 = x3 ∨ y2.
FG3 = C7 ∧ C8 ∧ C9, C7 = x1 ∨ x3 ∨ y3, C8 = x1 ∨ y3, C9 = x3 ∨ y3.
FG4 = C10 ∧ C11 ∧ C12, C10 = x2 ∨ x3 ∨ y4, C11 = x2 ∨ y4, C12 = x3 ∨ y4.
FG5 = C13 ∧ C14 ∧ C15, C13 = y3 ∨ y4 ∨ y5, C14 = y3 ∨ y5,C15 = y4 ∨ y5.
FG6 = C16 ∧ C17 ∧ C18 ∧ C19, C16 = y2 ∨ y5 ∨ z, C17 = y2 ∨ y5 ∨ z,

C18 = y2 ∨ y5 ∨ z, C19 = y2 ∨ y5 ∨ z.

A resolution proof R that F is unsatisfiable is given in Figure 2 as a DAG
whose nodes are shown as ovals. Each non-leaf node corresponds to a resolution
operation over the parent clauses specified by the preceding nodes. The proof R is
obtained by a version of a SAT-solver with conflict driven clause learning [11]. R
is partitioned into three chains of resolutions corresponding to the three conflicts
(backtracks) that occurred when solving the formula F . Each chain describes
derivation of a conflict clause shown in a dotted oval.

Empty ovals correspond to resolvents that are used only once right after
they are generated. All the resolvents of the proof R can be easily reproduced
by performing the sequence operations specified by the graph of Figure 2. For
instance, the first empty oval of the leftmost chain corresponds to resolving
clause C8 = x1 ∨ y3 with C13 = y3 ∨ y4 ∨ y5 (on variable y3) and producing the
resolvent x1 ∨ y4 ∨ y5. The latter is then resolved with the clause C11 = x2 ∨ y4

(on variable y4) producing the resolvent x1 ∨ x2 ∨ y5 corresponding to the next
empty oval and so on. Eventually, the conflict clause C21 = y1 ∨ z is derived. In
the middle resolution chain, the conflict clause C22 = x3∨z is generated. Finally,
the empty conflict clause C23 is derived in the rightmost resolution chain.

4.3 Proof encodings in terms of points

In this subsection, we explain what it means for a set of points to encode a
resolution proof.

Definition 7. Let C ′, C ′′ be two clauses and p′ and p′′ be two complete assign-
ments such that

– p′ and p′′ are only different in the value of a variable vi
– C ′(p′) = C ′′(p′′)=0 and C ′(p′′) = C ′′(p′)=1

Then p′ and p′′ are said to legalize the resolution of C′,C′′ on vi.

The two conditions of Definition 7 imply that C ′,C ′′ have opposite literals
of exactly one variable (which is vi). This means that clauses C ′,C ′′ indeed can
be resolved on vi. Intuitively, the existence of points p′ and p′′ satisfying the
conditions of Definition 7 means that a clause (the resolvent of C ′,C ′′) is implied
by C ′ ∧ C ′′. In the approach based on the notion of a stable set of points [9],
this implication is a theorem (that can be easily proved).

6



Example 4. Let us consider the first resolution operation of the proofR described
in Example 3 (i.e., resolution over C8 = x1∨y3 and C13 = y3∨y4∨y5). Let point
p′ be (x1 = 0, .., y3 = 1, y4 = 0, y5 = 1, ..) (the values of the missing variables
can be chosen arbitrarily). Let p′′ be obtained from p′ by flipping the value of
y3. Then C8(p′)=C13(p′′)=0 and C8(p′′)=C13(p′)=1. So p′ and p′′ legalize the
resolution over C8 and C13.

Definition 8. Let F be an unsatisfiable CNF formula and P be a set of points.
Let R = {R1, . . . , Rk} be a resolution proof. We will say that P encodes proof
R if each of k resolutions of R is legalized by some points p′ and p′′ of P .

Informally, the fact that P encodes a resolution proof means that the former is
large enough to legalize resolutions comprising a proof that F is unsatisfiable.
Definitions 7 and 8 imply that to encode a resolution proof R = {R1, . . . , Rk} one
needs a set P of at most 2k points (two points for each resolution). In reality,
this number may be smaller because the same point of P may participate in
legalization of more than one resolution operation.

Definition 9. Let N be a single-output circuit and T be a set of tests {x1,. . .,xs}.
We will say that T encodes a resolution proof R that FN ∧ z is unsatisfiable if
there is a set of points P = {p1,. . .,pm} such that P encodes R and each test
xi of T is the input part of a point pj of P .

Fig. 2. A resolution proof that F = FN ∧ z is
unsatisfiable

Definitions 8 and 9 im-
ply that there is always a
test set encoding a resolu-
tion proof R that is at most
two times the size of R.

Example 5. The proof R of
Figure 2 consists of 19 res-
olutions. So there is a set
of at most 38 points encod-
ing it. (In this small exam-
ple, the size of the proof
is larger than 8, which is
the total number of assign-
ments to 3 inputs. However,
it is not unusual to have a
proof, say, of 106 resolutions
for a circuit with 1000 in-
puts.) Since different points
p′ p′′ may have the same in-
put part one may need less
than 8 tests to encode R.

For instance, it can be
shown that the following set

7



of 5 tests x1=(x1 =0, x2 =1, x3 =0), x2=(x1 =0, x2 =0, x3 =1), x3=(x1 =1, x2 =
1, x3 = 0), x4=(x1 = 1, x2 = 0, x3 = 1), x5=(x1 = 0, x2 = 1, x3 = 1) encodes the
proof R. That there is a set of points P legalizing the 19 resolutions of R such
that the number of different input parts of points from P is 5.

5 Test Generation by Proof Encoding

In this section, we describe a procedure (called ProofByTesting) that, given
a single-output combinational circuit N checks if N ≡ 0. Our objective here
is threefold. First, we want to illustrate the point that the idea of TTPE is
applicable to both buggy and correct circuits. (N is buggy when N(x)=1 for
some input assignment x.) Second, even though ProofByTesting is not practical,
it illustrates the point that one can have a complete test set that is smaller
than 2n (where n is the number of inputs of N). Third, the TCBP procedure
described in Subsection 6.3 is a variation of ProofByTesting made efficient by
removing checks that a set of points encodes a proof. (So this variation is limited
to finding bugs in N).

c the procedure checks if N ≡ 0
ProofByTesting(N)
{ P = ∅, F = FN ∧ z;
while(true)
{p = gen pnt(F );
x = inp(p);
if (N(x) == 1) return(no);
P = P ∪ {p};
while (true)
{(C,Exst)= new legal res(P ,F );
if (Exst==false) break;
if (C == empty) return(yes);
F = F ∪ {C}; }}}

Fig. 3. A procedure for generating
tests in the process of encoding a proof

Pseudocode of the ProofByTesting
procedure is shown in Figure 3. First, it
builds CNF formula F as described in
Subsection 4.1. In the outer loop, Proof-
ByTesting generates a point p and ex-
tracts its input part x. (We assume here
that the same point is not generated
more than once). If x is a counterex-
ample, the procedure returns no. Oth-
erwise, p is added to the set of points P
and the inner loop begins. In this loop
ProofByTesting checks if P encodes a
resolution proof.

First, ProofByTesting arbitrarily
picks a new resolvent C obtained by a
resolution legalized by points of P . (We
assume here that no resolvent is gener-
ated if it is implied by an existing clause

of F .) If all legal resolvents have been generated, ProofByTesting leaves the inner
loop to generate a new point p. Otherwise, it checks if C is an empty clause. If
it is, the answer yes is returned. (The set of resolvents added to F contains a
resolution proof and so N ≡ 0. This proof is encoded by points of P . The input
parts of points from P form a test set encoding a resolution proof.) If C is not
empty, it is added to F and a new iteration of the inner loop begins.

8



6 Extracting Tests from Boundary Points

In this section, we recall the definition and some properties of boundary points
and describe the idea of using such points for proof encoding. Then we give a
simple algorithm (called TCBP) for generation of tests extracted from boundary
points. TCBP is a variation of ProofByTesting described in the previous section.
Instead of running inefficient checks if a set of points encodes a resolution proof,
TCBP generates points that encode mandatory parts of a resolution proof. (Since
TCBP does not encode a complete proof, it can be used only for finding bugs.)

6.1 Definition of boundary points and some useful properties

Definition 10. Denote by Unsat(p,F ) the set of clauses of a CNF formula F
falsified by a complete assignment p.

Definition 11. Given a CNF formula F , a complete assignment p is called a
lit(vi)-boundary point, if Unsat(p,F) 6= ∅ and every clause of Unsat(p,F) con-
tains literal lit(vi).

Example 6. The point p=(x1 = 0, x2 = 1, x3 = 0, y1 = 1, y2 = 0, y3 = 1, y4 = 0, y5 =
1, z=1) falsifies only the clauses C8 = x1 ∨ y3 and C9 = x3 ∨ y3 of the formula
F of Example 3. These two clauses share literal y3. So p is a y3-boundary point.

Definition 12. Denote by Bnd pnts(F) the set of all boundary points of F.

Definition 13. Let p be a complete assignment. Denote by flip(p,vi) the point
obtained from p by flipping the value of vi.

The proposition below explains why studying boundary points is important.

Proposition 1. ([10]) If Bnd pnts(F) = ∅ , then F is unsatisfiable.

Proposition 1 implies that for a satisfiable formula F , Bnd pnts(F ) 6= ∅.
In particular, it is not hard to show [10] that if F (p′)=0, F (p′′)=1 and p′′=
flip(p′,vi), then p′ is a lit(vi)-boundary point. (This explains the name “bound-
ary point”.) Another interesting fact is that if p′ is a vi-boundary point, the point
p′′= flip(p′,vi) is either a satisfying assignment or a vi-boundary point [10]. So
for an unsatisfiable formula all boundary points come in pairs. We will refer to
p′ and p′′ as symmetric vi-boundary and vi-boundary points.

Let x be the test corresponding to a lit(vi)-boundary point p (i.e., x =
inp(p)) where vi is not variable z. Then the part (y,z) of p specifies a faulty
execution trace for test x. Namely, at least one gate of N whose output/input
variable is specified by vi produces the wrong output value (which is the negation
of the value implied by the input values of this gate).

Example 7. Consider the y3-boundary point p=(x1 =0, x2 =1, x3 =0, y1 =1, y2 =
0, y3 =1, y4 =0, y5 =1, z=1) of Example 6. It specifies test x=(x1 =0, x2 =1, x3 =
0) and the execution trace (y1 = 1, y2 = 0, y3 = 1, y4 = 0, y5 = 1, z = 1). In this
trace, the AND gate G3 (whose output is described by y3) produces the wrong
output value 1 for the input values x1 = 0, x3 = 0 . (All the other gates produce
output values implied by the input values of these gates.)

9



6.2 Encoding resolutions proofs by boundary points

Let p′ and p′′ be symmetric vi-boundary and vi-boundary points of F . It is not
hard to show [10] that any clause C ′ falsified by p′ can be resolved on variable
vi with any clause C ′′ falsified by p′′. This resolution produces a clause that is
falsified by both p′ and p′′ and does not have variable vi. Then p′ and p′′ are
not lit(vi)- boundary points of F ∧ C. Adding a clause to F can only eliminate
some boundary points (but cannot produce new ones). So Bnd pnts(F ∧ C) ⊂
Bnd pnts(F ). We will refer to this process of removing boundary points by
adding clauses implied by F as boundary point elimination. (Note that adding
C to F may also eliminate lit(vi)-boundary points different from p′ and p′′.)

Let R1, . . . , Rk be a resolution proof where Rk is an empty clause. Note
that Bnd pnts(F ∧ Rk) = ∅. (By definition, if p is a lit(vi)-boundary point,
every clause falsified by p has to have at least one literal, i.e., lit(vi).) This
means that every lit(vi)-boundary point p of the initial formula F is eventually
eliminated. Then there is a resolvent Rm+1 such that p is a lit(vi)-boundary
point for F ∧R1∧ . . .∧Rm but not for F ∧R1∧ . . .∧Rm+1. It was shown in [10]
that a lit(vi)-boundary point p is eliminated in the proof only by a resolution
on variable vi. In other words, a lit(vi)-boundary point mandates a resolution
on vi. This fact is the foundation for using boundary points to encode resolution
proofs.

If p′ and p′′ are symmetric vi-boundary and vi-boundary points and they
are eliminated by adding to F the resolvent of C ′ and C ′′ on vi, then p′ and p′′

legalize this resolution (because p′ , p′′ and C ′ and C ′′ satisfy both conditions of
Definition 7). If p′ and p′′ are symmetric boundary points legalizing a resolution
on vi, every proof has to contain a resolution on vi (but not necessarily the
resolution of C ′ and C ′′) In the general case, i.e., when p′ and p′′ are not
symmetric boundary points, they may legalize a resolution on variable vi even if
there are proofs that have no resolutions on vi. So proof encodings by boundary
points are much closer related to proofs than encodings by arbitrary points.

It is not clear yet if one can encode an entire resolution proof using only
boundary points. (It may be the case that some resolution operations of a proof
can be legalized only by non-boundary points). However, the experimental study
of [10] showed that for well structured proofs the ratio of resolutions that could
be legalized by boundary points was close to 100%. This implies that (at least
for the formulas of [10]) using boundary points one can encode an entire proof
or a large part thereof.

Example 8. Every resolution operation of the proof R described in Example 3
eliminates a boundary point (that has not been eliminated by previous resolu-
tions). The set of 5 tests given in Example 5 was actually built by a program
that extracted tests from boundary points eliminated by resolutions of R. For
example, the y3-boundary point p′=(x1 = 0, x2 = 1, x3 = 0, y1 = 1, y2 = 0, y3 =
1, y4 =0, y5 =1, z=1) introduced in Example 6 and the symmetric y3-boundary
point p′′=flip(p′,y3) are eliminated by the first resolution of R. (The latter re-
solves clauses C8 = x1 ∨ y3 and C13 = y3 ∨ y4 ∨ y5 on variable y3.) Points p′ and
p′′ legalize this resolution.

10



6.3 Extraction of tests from boundary points

c F = FN ∧ z
TCBP(F ,T )
{ count=0; T = ∅;
while (count < thresh)
{vi= pick var(F );
(ans,p) = BndPnt(F ,vi,lim);
if (ans < success) continue;
else count++;
x=inp(p); T = T∪ {x};
if (simulate(x,F ) == yes)

return (found);
eliminate(p,F );}

return(not found);}

Fig. 4. TCBP procedure

The procedure for extraction of tests from
boundary points called TCBP (Testing
based on Computation of Boundary Points)
is shown in Figure 4. Given a single-output
circuit N , specified by a CNF formula FN ,
the TCBP procedure generates a set of tests
to check if N evaluates to 1. (This comes
down to checking the satisfiability of CNF
formula F = FN ∧ z.) TCBP terminates if a
test is found for which N evaluates to 1 or
if the number of generated tests exceeded a
threshold. TCBP records the set of all gen-
erated tests. (The reason is as follows. Our
experiments showed that due the high qual-
ity of tests generated by TCBP, even if a test
is unsuccessful for N it may detect a bug in a

modified version N . This modification may correspond, for example, to a wrong
design change.)

The main work is done in the ’while’ loop. First a variable vi of F is picked
randomly. Then the procedure BndPnt is called to find a lit(vi)-boundary point.
lim. If no boundary point is found by BndPnts within time limit lim, a new
iteration of the ’while’ loop is started. (In our experiments, lim was set to 10
sec.) Otherwise, a test x is constructed as the input part of the boundary point
p found by BndPnt. This test is used for simulation. In terms of SAT, simulation
comes down to adding the set U of unit clauses encoding test x (i.e., satisfied
by the assignments of x) to the formula F and running Boolean Constraint
Propagation (BCP).

BndPnt(F ,vi,lim)
{G = F \ (Fvi

∪ Fvi
).

(ans,p)=sat(G,lim);
return((ans,p));}

Fig. 5. BndPnt procedure

If the circuit N is deterministic, then BCP
over the formula F = FN ∧ U ∧ z results in as-
signing a value to the output variable z. If z=1
(respectively z= 0), the test x is a counterexam-
ple (respectively not a counterexample). In exper-
iments, we used faults that may make the behav-
ior of a gate of N non-deterministic. Then, vari-

able z may not get assigned after BCP is over. If this is the case, a SAT-solver
was used to finish the instance (i.e., to prove that F was unsatisfiable if its input
variables were assigned according to x or to find a satisfying assignment). If such
an assignment was found, this meant that x detected the fault that the gate with
non-deterministic behavior produced the wrong output value (i.e., produced the
negation of the value implied by the input assignments for the gate without the
fault).

If x fails to detect a fault, the lit(vi)-boundary point p from which x was ex-
tracted is eliminated by adding a resolvent on variable vi. (No particular heuristic

11



was used to pick the pair of clauses to be resolved). The test x is added to the
set of tests T and a new iteration of the ’while’ loop starts.

The procedure for generation of a lit(vi)-boundary point (called BndPnt) is
given in Figure 5. First, the CNF formula G is obtained from F by removing
the clauses having literal vi (denoted by Fvi) and vi (denoted by Fvi

). Then a
SAT-solver sat is called to check if G is satisfiable. If a satisfying assignment p is
found, it means that one of the following three possibilities occurred: a) Fvi

(p)
= 0 and hence p is a vi-boundary point (because it falsifies only clauses of F
that have literal vi); b) Fvi

(p)=0 and p is a vi-boundary point; c) F (p)=1 and
p is a satisfying assignment (never happened in our experiments).

If the SAT-solver sat fails to find a boundary point it may mean that the
run time exceeded lim or that formula G (and hence F ) is unsatisfiable. (The
latter never happened in our experiments because we considered only satisfiable
formulas F there).

7 Some Background

Methods of combining test generation and formal methods have been studied in
many papers (e.g. [8, 12] to name a few). In this section, for the lack of space,
we only mention the work directly related to generation of tests extracted from
boundary points (namely, generation of tests detecting hardware faults [5] and
software mutations [7]).

Identification of defective chips is usually done by running tests that detect
faults of a particular fault model [5]. In many cases, such a fault model may
have little to do with what really happens on a defective chip. It is just used
because tests detecting faults of this model are good at finding real faults. The
most popular fault model of that kind is the stuck-at model. It describes the
situation when a line of a gate is stuck at a constant value 0 or 1.

There is a tight relation between tests detecting stuck-at faults in a circuit
M ′ and boundary points of a CNF formula F = FN ∧ z. Here N is the miter
of circuits M ′ and M ′′ (like the one shown in Figure 1) where M ′′ is a copy of
circuit M ′. Variable z specifies the output of N .

Consider, for example, a stuck-at-0 fault φ on the output line of AND gate
G′ of M ′. Let yi,yj be the input variables of G′ and yk be its output variable.
Denote by M ′φ the circuit M ′ with fault φ. A test xφ detecting φ (i.e., detecting
that yk ≡ 0) has to assign yi and yj to 1. Then the gate G′ of M ′φ and its
counterpart G′′ in M ′′ produce different output values (0 and 1 respectively).

Let p=(xφ,y,1) be the point where (y,1) is the correct execution trace for
test xφ for the miter of M ′φ and M ′′. Then p is an yk-boundary point for the
formula F . Indeed, since yi = 1,yj = 1,yk = 0 in p, the latter falsifies clause
C = yi ∨ yj ∨ yk of the formula FG′ specifying gate G′. Since (y,1) is the correct
execution trace for the miter of M ′φ and M ′′, all the other gates of the miter N
of M ′ and M ′′ are assigned correctly. It means that p satisfies all the clauses of
the formula F but C.

12



Summarizing, one can view introduction of stuck-at faults as a way to gen-
erate boundary points of formula F (describing the miter of two correct copies
of the same circuit). Importantly, the stuck-at fault model has been successfully
used in industry for three decades, which serves as an indirect evidence of the
quality of tests extracted from boundary points (at least for hardware testing).

The method of introducing mutations into a program has a lot of similarity
with identification of defective chips based on fault models. In particular, the
mutation operator replacing a logical subexpression with constant ’true’ or ’false’
introduces a “stuck-at fault” into a program. Another interesting similarity is
that fault injection into a circuit (respectively introduction of a mutation into a
program) can be used to identify redundancy in the circuit (respectively in the
program). It is not hard to show that the absence of lit(vi)- boundary points in
a CNF formula F means that the clauses of F with variable vi can be removed
from F without changing its satisfiability. One can conjecture that similarly to
hardware manufacturing testing, using mutations is just a way to produce tests
that could have been extracted from some sort of boundary points of a formula
describing the “correct” program (i.e., the one without a mutation).

8 Experimental Results

In this section, we give some preliminary experimental results. Our intention
here is just to check the idea of using tests extracted from boundary points by
considering a simple example that mimics a hard real-life problem. This problem
is verification of arithmetic devices embedded into control logic. (The famous
Pentium bug was caused by failing to solve an instance of this problem.) In the
experiments, we tested the miter N of a faulty and correct circuits denoted by
Mf and M respectively (an example of a miter is shown in Figure 1). The circuit
M contained a large arithmetic component. The circuit Mf was a copy of M
with a fault introduced into the arithmetic component.

In the experiments we wanted to demonstrate the following two properties of
tests built by TCBP (i.e., extracted from boundary points). First, even though
generation of such tests takes time their quality is much higher than that of
random tests. Second, even unsuccessful TCBP tests meant for verification of
N (i.e., tests for which N evaluates to 0) have a high chance to find a bug in a
modified version of N if this modification is small. (In particular, we extracted
tests from boundary points of an unsatisfiable formula F describing the miter
N of two identical copies of circuit M . These tests were very effective in finding
bugs when one copy of M was replaced in N with a faulty circuit Mf . We do
not report this part of experiment for the lack of space.) From a practical point
of view this means that the cost of tests generated by TCBP can be amortized
over many design steps (due to reusing tests generated at previous design steps).

As a fault, we considered adding a literal to a clause of the CNF formula FM
specifying circuit M. (We found the bugs of this kind to be very easy to introduce
and very hard to detect.) The resulting formula FMf

specified the faulty circuit
Mf . Adding a literal to a clause describing a gate, makes the latter behave non-

13



deterministically. (Consider the clause C = yi ∨ yj ∨ yk of FM requiring that
when inputs yi and yj of an AND gate Gk are set to 1, the output of Gk specified
by yk is 1 too. After adding literal ym to C, where ym specifies the output of
gate Gm, the output of Gk can take an arbitrary value, when yi = yj = 1 and
ym = 0.) A test x is considered to have detected a fault in gate Gk of Mf , if the
miter of Mf and M evaluates to 1 when Gk produces the wrong value, i.e., the
negation of the value implied by the values of its inputs.

We compared TCBP with two extremes of functional verification: random
testing (an instance of pure simulation) and checking the satisfiability of the
miter N by a SAT-solver (an instance of pure formal verification). For testing the
satisfiability of F in one SAT check we used SAT-solvers Satzilla, Precosat and
Mxc that won the first, second and third places in the SAT-2009 competition [4]
in the industrial category for satisfiable formulas. We also used Precosat in TCBP
for finding boundary points.

We ran two experiments that were meant to probe the regions that are good
and bad for random testing. In the first experiment, the circuit M consisted only
of an arithmetic component (good for random testing). In the second experiment,
M consisted of an arithmetic component feeding an input of a multi-input AND
gate (bad for random testing).

The results of the first experiment are described in Table 1. In this exper-
iment, circuit M implemented the functionality of a medium bit of a 128-bit
multiplier. (The size of the CNF formula F specifying the miter of M and Mf

was about 114,000 variables and 437,000 clauses. The formulas of Table 2 had
about the same size.) We cherry picked 5 faults that were easy for random testing
and hard for SAT-solving. The runtimes of SAT-solvers are shown in columns
2,3,4. (The timeout was set to 1 hour.) When using random testing, for every
fault we generated 10 sets of random tests, the two columns of “random testing”
showing the average run time and average test set size.

The last three columns of Table 1 show the results of TCBP. To mitigate the
influence of chance in picking boundary points, TCBP was given 10 tries to find
tests for the set of 5 faults. Before generating tests for fault number i (i=2,..,5),
the tests generated for faults 1,..i -1 (in the same try) were applied. If an old
test detected the fault no new tests were generated. In such a case, the number
of tests generated for this fault in this try was set to 0 and only the time taken
by simulation of old tests was charged. The “old tst.” column shows the number
of times a fault was detected by an old test x generated to detect a previous
fault. (To be tried for a fault number i, test x did not have to be successful for
a fault number j, j < i.). For example, value 10 for fault 3 means that in every
try (out of 10), fault 3 was detected by a test generated before to detect fault 1
or 2. In the last two columns, for each fault, the average run time and average
number of tests are given. The latter is computed over the tries where no old
test was successful and new tests had to be generated to detect this fault. (For
that reason no number of tests is given for faults 3 and 5 that were detected by
old tests in all 10 tries.)

14



The results of Table 1 show that TCBP performed much better than SAT-
solvers (but worse than random testing). It was able to reuse tests generated for
previous faults and it was faster even without reusing tests (e.g. for fault 1).

Table 1. Testing a circuit derived from a 128 bit multiplier

Flt. Satzilla Precosat Mxc random testing TCBP
num. s. s. times. #tsts old tst. time (s.) #tsts

1 >1h >1h >1h 4.8 334 0 346 87

2 >1h >1h >1h 7.8 656 1 328 83

3 >1h 2,450 >1h 0.2 15 10 0.4 n/a

4 >1h 931 >1h 2.8 212 7 50 43

5 >1h 1,596 52 4.6 205 10 0.4 n/a

Table 2 shows the results of testing the miter N of M and Mf when M was
made up of the circuit implementing a medium bit of a 128-bit multiplier which
fed an input of a 24-input AND gate. The output of this AND gate was the
output of M. (The other 23 inputs of this AND gate were primary inputs of M.)
The idea was to make it much harder for random tests to propagate faults to
the output. The experiments indeed showed that random testing failed on every
fault we introduced (with the threshold of 106 tests per fault). Table 2 contains
the performance of Precosat and TCBP on a subset of 17 faults (we discarded
the faults that were easy for both Precosat and TCBP). The time limit was
set to 5 hours. (We did not use Satzilla and Mxc because they performed much
worse than Precosat not being able to detect the majority of faults within the
time limit while Precosat found all faults.)

Table 2. Testing a 17-fault set for a cir-
cuit with arithmetic and logic components

Precosat TCBP
time (s) time (s) #tests

total 54,115 2,919 562
average 3,183 172 33
median 935 8 3

As before, we used 10 tries to
generate tests for the 17-fault set. So
the total, median and average values
of Table 2 were computed for the
averages over 10 tries. When test-
ing fault number i, i=2,..17 we also
(as in Experiment 1) checked if this
fault can be detected by a test gen-
erated for a fault 1,.., i -1 in the same

try. (Typically, one had to generate tests only for 3-5 faults out of 17. The other
faults were detected by old tests.)

The results of Table 2 show that on the set of hard faults we used, TCBP was
almost 20 times faster (even though it employed the same version of Precosat to
generate boundary points). Again, this can be attributed to a) reusing old tests;
b) finding a counterexample faster even when TCBP had to generate new tests.
Reusing of old tests explains the small median values of TCBP for the run time
and for the number of tests. For many faults, TCBP generated new tests in a
small number of tries (if any).

15



9 Conclusions

We introduced a test generation procedure based on the TTPE framework
(Treating Tests as a Proof Encoding). Given a circuit and a property, this pro-
cedure finds tests that encode mandatory fragments of any resolution proof that
the circuit satisfies the property. These tests are extracted from boundary points,
and this process does not require a proof. The successful demonstration of these
ideas implies that the study of proof systems more complex than resolution and
for logics more expressive than propositional logic, may lead to new methods for
generating high-quality tests for both hardware and software verification.

References

1. Abramovici, M., Breuer, M., Friedman, D.: Digital Systems Testing and Testable
Design. John Wiley & Sons, (1994)

2. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, chapt. 2, pp. 19-99.
North-Holland (2001)

3. Budd, T.A., DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Theoretical and empirical
studies on using program mutation to test the functional correctness of programs.
In: 7th ACM SIGPLAN- SIGACT Symposium on Principles of Programming Lan-
guages, pp. 220-233. Las Vegas, Nevada, (1980)

4. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich, Y.,
Meyer, B. (eds.), TAP-2007. LNCS, vol. 4454 , pp. 169-188. Springer, Heidelberg
(2007)

5. Goldberg, E.: Boundary points and resolution. In: Kullmann, O. (eds.), SAT-2009.
LNCS, vol. 5584 , pp. 147-160. Springer, Heidelberg (2009)

6. Goldberg, E.: On bridging simulation and formal verification. In: Logozzo, F.,
Peled, D., Zuck, L.D. (eds.), VMCAI-2009. LNCS, vol. 4905 , pp. 127-141. Springer,
Heidelberg (2009)

7. Marques-Silva, J., Sakallah, K.: Grasp - a new search algorithm for satisfiability.
In: International conference on computer-aided design, pp. 220-227, Washington,
DC, USA, (1996)

8. Satpathy, M., Butler, M.J., Leuschel, M., Ramesh, S.: Automatic testing from
formal specifications. In: Gurevich, Y., Meyer, B. (eds.), TAP-2007. LNCS, vol.
4454 , pp. 95-113. Springer, Heidelberg (2007)

9. Tseitin, G.S.: On the complexity of derivation in the propositional calculus. In:
Zapiski nauchnykh seminarov LOMI, vol. 8, pp. 234-259 (1968)

10. Alloy system, http://alloy.mit.edu/community
11. CProver, http://www.cprover.org/cbmc
12. JavaPathfinder, http://babelfish.arc.nasa.gov/trac/jpf
13. SAT 2009 competition, http://www.satcompetition.org/2009

16


