Modularizing Error Recovery

*

Jeeva Paudel
Department of Computer Science
University of Saskatchewan
Canada, S7N 5C9

ABSTRACT

Error recovery is an integral concern in compilers. Improv-
ing error recovery requires comprehension of a large and
complex code base, in order to locate the places which raise
errors and places which handle them. This involves sig-
nificant amounts of cognitive effort to identify these error-
related static locations in the compiler, and the dynamic
points in compilation where errors are detected. Essentially,
the error recovery concern is a global design issue which is
entangled with many other functional concerns, and whose
implementation is frequently scattered across different pro-
gram elements. Current compiler implementations often do
not explictly identify error-related control dependencies and
fail to separately characterize the actions to take in the event
of errors.

In the context of the AspectJ compiler (ajc), we modu-
larize error concerns as join points-and-advice aspects which
provide improved modularity by explicitly declaring the loci
of error detection, and providing extension points as advice
to handle these errors. We apply this modularization to
support a diverse set of examples of error recovery. As a
result, the compiler writer no longer needs to navigate and
understand the entire compiler source in order to replace or
extend error recovery actions.

1. INTRODUCTION

Conceptually, compilers consist of multiple phases, each of
which can encounter errors. Although errors are common-
place and form a global design issue, very few languages have
been designed with error handling in mind[1} |15]. Planning
error handling and recovery right from early stages of com-
piler development can both simplify their structure and im-
prove their response to errors in the program to be compiled.
A good error handler should:

e allow compiler designers to quickly identify the source,

*jep924@mail.usask.ca
chd032@mai1.usask.ca

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Christopher Du‘[chynT
Department of Computer Science
University of Saskatchewan
Canada, S7N 5C9

and associated context of errors,
e be amenable to improvements,

e not signficantly slow down the processing of correct
programs, and

e try to recover from simple errors whenever possible.

Effective realization of these goals, however, is challenging
for two major reasons. First, the error concern is tightly cou-
pled to different phases of a compiler, and is interleaved with
the underlying program logic in a complex manner. Take for
instance, semantic analysis and intermediate code genera-
tion phases. Semantic analysis phase synthesizes and main-
tains type and value environments as part of type-checking
and symbol table loading. Similarly, it also computes the
escape values as part of escape analysis. These attributes
will be inherited by the intermediate code generation phase
for managing static links and generating intermediate repre-
sentation trees. Such an intricate relationship between these
phases engenders arcane control dependencies, which cannot
be described by typical responsibility boundaries. Thus, it
affects several design choices of compilers in subtle but per-
vasive ways. Second, error-related control dependencies are
not explicitly defined and localized into distinct modular
units.

As a result, error handling is further complicated by the
fact that it is not implemented in separate dimension. Al-
though it is a global design issue and cuts across different
units of functionality, it is still being implemented in tradi-
tional hierarchical fashion, which is incapable of modulariz-
ing the cross-cutting concerns.

In this paper, we aim to simplify error handling in com-
pilers. In order to meet this goal, we modularize the error
handlers discovered in different phases of a compiler into a
distinct unit. This facilitates modification and improvement
of error reporting and patching processes in the subsequent
error recovery tasks.

In order to demonstrate our modularization endeavor, we
have chosen ajc. Although it is an aspect-oriented compiler,
it does not incorporate aspects to modularize the error han-
dlers within itself. Hence, there are plenty of opportunities
for aspectization of error handling concerns. Further, owing
to its support for weaving from source code and compiled
code, often times the compiler has to vouch for correctness of
a single functionality at different levels. Hence, the need and
opportunity for handling the same error at different levels
in ajc provides a fair level of complexity in modularization
of error concerns, over other mainstream compilers.

In light of these problems of non-modular and hidden

structure of error handling in compilers, the research contri-
butions of this paper are:

1. Identification of points in the static program structure
and dynamic execution graph of the compiler that are
responsible for error handling.

2. Diverse set of examples for modularization of distinct
kinds of scattered errors.

3. Explicit extension points for error recovery

4. Assessment of the modified compiler in terms of

e modularity,
e performance, and
e correctness.

To achieve these goals, we leverage the abstraction and
modularization capabilities of Aspect Oriented Programming-
(AOP)[10]. Particularly, we rely on its join point model(JPM)
to render more flexible the association between error han-
dling code and normal application code.

We begin by reviewing some important details about error
handling. Next, we provide a brief overview of the scattered
and tangled nature of existing error handlers in the compiler
chosen for this study. Then, we present examples of our
modularization approach. This is followed by demonstration
of subsequent changes in the modular units to accommodate
our evolving needs. Finally, we close with a discussion of
several issues that arise during error modularization, and a
description of future work.

2. ERROR RECOVERY

Most programming language specifications do not describe
how a compiler should respond to errors; the decision is left
to compiler designers|1]. As a result, naive compilers are de-
signed in a simple manner to report failure and stop further
computation in the event of errors. But, this behavior would
be unkind to programmers. A reasonable approach from
the user perspective would be a meaningful error report or,
even some kind of adjustment so that the compilation could
proceed. Most compilers attempt to adjust some inputs or
values at the point of error in a way that allows compilation
to proceed further, even if not until the end of the program.
This process is called error recovery.

Error recovery is a four-step process, which consists of: de-
tection, diagnosis, reporting and patching[4]. Current imple-
mentation techniques demand a significant amount of time
and cognitive effort in identifying the source, context and na-
ture of errors for reporting and repairing them. Even worse
is the fact that this process has to be repeated every time
a new error reporting or patching facility is to be tested or
introduced.

Our design goal here is to identify and explicitly define
such error handling artifacts — sites, contexts and control
flows. By sites, we mean the locations in the program source
code where errors need to be detected and handled. By
contexts, we mean the calling or executing types, values used
or synthesized at error sites, and formals and return types
of the methods raising errors. Control flow here refers to the
execution path of the program.

Modularization of such artifacts increases the value of the
system in terms of available options for better comprehen-
sion, re-usability, extension points for error recovery and
assesement of new error recovery strategies.

11

13

17

19

public ResolvedMember [] getDeclaredFields () {
raiseCantFindType (WeaverMessages .
CANT_FIND_TYPE_FIELDS)) ;
return NOMEMBERS;

}

public ResolvedMember [] getDeclaredMethods () {
raiseCantFindType (WeaverMessages .
CANT_FIND_TYPE_METHODS) ;
return NOMEMBERS;

public int getModifiers () {
raiseCantFindType (WeaverMessages .
CANT_FIND_TYPE_MODIFIERS) ;
return 0;}

Listing 1: Error Reporting related to MissingTypes

2.1 Error Recovery in gjc

AspectJ is an aspect-oriented extension to Java. In addi-
tion to normal front-end and back-end components of a com-
piler, it also contains a matcher (for name patterns) and a
weaver (both for intertype declarations and for advice). This
study mostly targets the weaver. The weaver alone gener-
ates more than 150 different error messages. References to
these errors, and their handlers are scattered across different
units of code such as: methods, classes, and packages. Ex-
amples of errors at the weaver end include those related to
parsing, argument binding, type resolution, missing types,
compilation environment, and weaver states.

Consider which shows a part of code in Miss-
ingResolved TypeWithKnownSignatures class. While attempt-
ing to resolve a required type in the Worlcﬂ if the weaver
fails to find any dependent type, it returns an instance of
this class. This class defers the production of the “can not
find type” error until some code requires such information
which cannot be determined from the type Signature alone.
This enables the weaver to be more tolerant to missing types
and thus, delay the compilation failure to a certain extent.

This class has facility to report errors upon attempts to ac-
cess various missing types- fields, methods, interfaces, point-
cuts, superclasses and modifiers. Although, they are neatly
modularized in a single class, this implementation has four
major problems:

e First, there is clear tangling of two different concerns
here: functional requirement and error handling. The
functional requirement here is that these methods should
return some default values of appropriate types. The
error concern however is that, an error should be re-
ported upon any attempt to access non-existent at-
tributes of MissingResolved TypeWithKnown-Signatures
type. Such tangling inhibits possibilities of creating
and re-using abstractions of error handling and func-
tional operation. Consider cases, where we would like
only error reporting and cases where we would like
these methods to return some default values without
reporting errors. As the implementation stands now,

ajc collects all members that have an invasive effect outside
their own compilation unit into a World before any weaving
can take place.

[

o

4

public abstract privileged aspect MissingAndIncompatibleTypes {
protected abstract pointcut currentType(MissingResolvedTypeWithKnownSignature aType);

protected abstract pointcut contextForMissingTypes();

protected abstract pointcut contextForIncorrectTypeAssignability (ResolvedType otherType);
pointcut missingResolvedTypes (MissingResolvedTypeWithKnownSignature aType):

currentType (aType)
&& contextForMissingTypes ();
pointcut
ResolvedType otherType):
currentType (aType)

incompatibleTypeAssignability (MissingResolvedTypeWithKnownSignature aType,

&& contextForIncorrectTypeAssignability (otherType);}

Listing 2: Abstract Aspect for reporting Missing Resolved Types

privileged aspect MissingResolvedTypeErrorReporter extends MissingAndIncompatibleTypes {

protected
execution(public ResolvedMember []

|| execution (public ResolvedMember []

|| execution (public ResolvedType []

|| execution (public ResolvedMember []

|| execution (public ResolvedType

|| execution (public int x.getModifiers ())

|| execution (public

pointcut contextForMissingTypes ():

protected

x.getDeclaredFields ())
#.getDeclaredMethods ())
x.getDeclaredInterfaces ())
*.getDeclaredPointcuts ())
x.getSuperclass ())

boolean x.hasAnnotation(UnresolvedType));

pointcut contextForIncorrectTypeAssignability (ResolvedType otherType);

protected pointcut currentType(MissingResolvedTypeWithKnownSignature aType):

this (aType);

Listing 3: Concrete Aspect to report Missing Resolved Types

this is not possible.

e Second, it lacks clarity of program execution path in
which the errors are reported. A careful examination
of the above implementation reveals that the error re-
ports are generated before these methods return val-
ues. However, this is not visibile outright from the
current implementation. This would be more cumber-
some when error handlers are interspersed across dif-
ferent methods in different classes. This because the
loci of such handlers are not explicitly identified and
defined in the program source.

e Third, it lacks a principled way to remember the lo-
cation of these error reporter Next time, if a de-
veloper wants to extend existing error reporting, he
would need to inspect the code again to find them.
Thus, it lacks a facility to properly define and localize
the context in which these reports should be gener-
ated. Further, by looking at this implementation, it
is difficult to convince if these are the only methods
that generate raiseCantFindType(..) error, or there are
other methods too.

e Fourth, this implementation is brittle to changes. For
error diagnosis or handling, we might to need to carry

out data-oriented or conrol-oriented changes or both[11].

Design patterns [7] such as Subject-Observer and Visi-
tor will suffice for a decently modular implementation,
if any one of these changes is required. In cases where
both of them are required, it is quite difficult to do so
without code repetition and tangling using traditional
programming paradigms. Among different proposals

2We are ignoring the facility of axnnotations, because that
too requires inspection of a large body of code.

[

11

13

public ResolvedMember []
return NOMEMBERS;

getDeclaredFields () {

public ResolvedMember []
return NOMEMBERS;

getDeclaredMethods () {

public int getModifiers () {
return 0;

}

Listing 4: MissingTypeWithKnownSignature class
after extraction of error concern

such as DemeterJ[11] and AOP proposed to solve this
problem, we will use AOP in this paper.

These are the problems we are trying to address by modu-
larization of error concern.

3. DESIGN OF MODULAR ERROR HAN-
DLERS

Before further discussions, we provide a brief overview
of the AOP [§] concepts: JPM, inter-type declaration, and
aspect. The JPM defines the structure of dynamic cross-
cuttingﬂ concerns and underlies the concepts of:

1. join points — these are points in program execution
or static locations in the source code, including access
to the control flow contexts (cflow).

3By cross-cutting, we mean the concepts that are scattered
across traditional units of modularization, such as: methods,
classes, modules and packages

-

before (MissingResolvedTypWithKnownSignature aType):
missingResolvedTypes (aType){

String typeName = thisJoinPointStaticPart.
getSignature ().getName ();
String weaverMsg = WeaverMessages .
CANT_FIND_TYPE;
if (typeName.endsWith("Methods"))
weaverMsg = WeaverMessages .
CANT_FIND_TYPE METHODS;;
else if (typeName.endsWith("Fields"))
weaverMsg = WeaverMessages.
CANT_FIND_TYPE_FIELDS;

else if (typeName.endsWith("Modifiers"))
weaverMsg = WeaverMessages .
CANT_FIND_TYPE_MODIFIERS ;

aType.raiseCantFindType (weaverMsg);}

Listing 5: Improved advice for more informative re-
porting of Missing Types

2. pointcuts — they provide a means of identifying join
points.

3. advice — it is a means of affecting the semantics at
the join points, by changing behavior before, after, or
around the join points.

The other concept adopted by AOP is inter-type declara-
tions. They provide a way of instrumenting the static be-
havior of classes by supporting the notion of open classes.
Aspect is a module encapsulating these AOP constructs.

We now have sufficient information to describe the gen-
eral design for modularizing error recovery to support better
comprehension, decreased redundancy, and increased re-use
opportunities for recovery. In short, we identify the points
in program execution where error checks should happen, and
explicitly move them into separate modular units, along with
the actions to be taken in case of such errors. Here, we do
not propose any efficient error recovery schemes, but only
try to localize and ecapsulate such error-related concerns
into clean modular units. Hence, existing error recovery in
ajcﬂ is not changed, save for the example implementations
depicting the usability of our design.

To locate declarations and references of error handlers,
we mainly followed two approaches to code inspection. We
used development aspects to identify the error print streams,
loggers, exception throwing points and handlers. To identify
other customized error reporters, we had to manually inspect
the code. A major finding of this was that the compiler is
riddled with error handlers, and it involved significant ef-
fort to locate them. So, here we try to reduce the economic
burden associated with identifying such join points, by en-
capsulating them in dedicated responsibility boundaries.

We have implemented a set of aspects in ajc to modularize
error handlers pertaining to:

e parsing of aspectj constructs such as type patterns,
pointcuts, advices and inter-type declarations

4Although the design decisions were conceieved with As-
pectJ in mind, they are equally relevant to and applicable
to other aspect oriented compilers with support for the join
point model, inter-type declarations, and aspects.

e creation of initialization and pre-initialization shadows
for type mungers

e type resolution and

e enforcement of type munging rules.

Now, we will look at three of these examples, and their
subsequent re-use and improvement for enhanced reporting
and recovery. Two of these are semantic errors and the
remaining one is syntactic error.

3.1 Modularizing MissingType Error Handler

This example is about missing types, first introduced in
section 2.1.

Lets begin by extracting the error handlers related to miss-
ing types from Using AspectJ, we extract and
modularize handlers related to missing type error into as-
pects as shown in and [3| After separation of error
handlers, the refactored class now looks as shown in
ing 41 Here, we will assess the benefits of such modulariza-
tion.

The advice shown in[[isting 5is part of an abstract aspect
MissingAndIncompatibleTypes, and defines the action to take
in the event of missingResolvedTypes. An abstract aspect
helps us define a set of events that is left undefined, but
that can be advised. Then in the concrete aspect Missin-
gResolved TypeErrorReporter, shown in [Listing 3} we bind the
methods to the specific events to which the handler should
be hooked. This way, we are separating location (points in
static program and dynamic execution graph) where errors
might occur from the actions that should be taken upon their
occurrence. Further, by looking at the context associated
with the advices, we can infer end-to-end data flow related
to error handlers. In our examples, it is easy to spot that
“missing type” errors are raised only by instances of Missin-
gResolved TypeWithKnownSignature types. Yet another ben-
efit of this modularization is flexibility in accommodating
design decisions. For instance, we decide to change the de-
sign decision to report errors only after returning default
values in response to the getters in We can easily
model this change by changing the kind of advice to after.

At present, our error reporter is very naive in that it says
nothing other than “missing type” error. If we wish to inform
precisely the kind of missing type, this change needs to occur
only in the advice body as shown in Note that by
decoupling error concern from the functional code, we can
make changes to each of them in relative isolation.

3.2 Modularizing Parsing Error Handler

Our second example is about errors while parsing. Specif-
ically, here we will look at errors raised as a result of ill-
formed type patterns and pointcut expressions.

In order to modularize error handlers related to parsing,
we first identify the join points that lead to ParserExceptions,
and define them as pointcuts. Then, as part of advice imple-
mentation, we surround computation under these join points
with try-catch blocks. The catch block is engineered to per-
form appropriate error reporting whenever ParserException
is raised. First consider handling errors when parsing a given
type pattern. shows pointcut specification for cap-
turing join points which might raise ParserException when
parsing type patterns. Likewise depicts pointcuts
for capturing join points that might raise ParserException
when parsing Pointcuts. From these pointcut definitions, it

w

o

/% Capture Invalid Type Pattern */
pointcut capturelnvalidTypePattern(String patternString ,
cflow (execution(private static TypePattern parseTypePattern(String,
&&args (patternString , location))
&& (call (public TypePattern PatternParser.parseTypePattern())
|| call (public void #.setLocation(ISourceContext, int, int)))
&& withincode(private static TypePattern parseTypePattern(String,

AjAttributeStruct location):
AjAttributeStruct))

AjAttributeStruct));

Listing 6: Point to capture invalid type pattern while parsing AspectJ attributes

/* Capture Invalid Pointcut */
pointcut capturelnvalidPointcut (String pointcutString ,
cflow (execution(private static Pointcut parsePointcut (String,
&&args (pointcutString , location , x*))
&& (call(public Pointcut PatternParser.parsePointcut ())
|| call (public void x.setLocation(ISourceContext, int, int)))
&& withincode (private static Pointcut parsePointcut(String, AjAttributeStruct,

AjAttributeStruct location):

AjAttributeStruct , boolean))

boolean));

Listing 7: Point to capture invalid pointcut while parsing AspectJ attributes

is clear that parsing error occurs occur in the control flow
of top-level or recursive excecution of parseTypePattern or
parsePointcut methods. Since the behavior to instrument at
these join points is quite similar, we can apply a single ad-
vice to report errors at these sites. The advice is shown in

Besides these, the compiler has to deal with several other
errors that occur during parsing, such as: when parsing per-
clauses, annotation pointcuts, annotation aspects and other
aspectj constructs. Such closely related pointcuts are good
candidates to be localized into a single aspect that handles
parsing errors across different aspectj attributes. Further,
composing them provides an opportunity to handle errors
through a single advice.

3.3 Modularizing InCorrectReturnType Error
Handler

This example provides recovery from errors that occur
when new types violate type munging rules. Specifically,
when an existing type hiearchy is changed or new one is
introduced, the weaver has to ensure that these types do
not violate the pre-defined type-munging rules. Here, we
will look at error handling related to method overriding in
sub-types.

Any attempt to weaken the post condition of an overrid-
ing method in a derived class by broadening the range of
return types violates Liskov Substitution Principle|13]. Ac-
cordingly, ajc raises an error under such a circumstance.
Here, we examine the error handler that provides this be-
havior resulting from inter-type declarations. Since AspectJ
supports weaving from source code and pre-compiled code,
the aforementioned error has to be dealt with at both of
these levels. For brevity, we do not present the current im-
plementation of this error handler here.

We have identified and localized the artifacts related to
this error in aspects. The pointcuts and associated ad-
vices are shown in and [I0] From these point-
cuts, one could easily find that InCorrectReturn errors are
raised in two situations. First, in the control flow of ad-
dition of inter-type mungers as indicated by cflow pointcut
cflow(execution(public void Resolved Type.addInter TypeMunger-

(ConcreteMunger)) in|Listing 10} The exact point where this

happens is while checking the type of overriding method (re-

sulting from new type munger to be added) as indicated by
execution(public boolean Resolved.checkLegalOverride(...)). Fur-
ther, we also have access to the context of this error through
args(..) pointcut. Second situation in which InCorrectReturn
is handled is while enforcing type compatibility rules as part
of type munging rules for declare parents as indicated by exe-
cution (private boolean BcelMunger.enforceDecpRule4_compat-
ibleReturn(..)).

These pointcuts give us a clear idea of the control flow of
the program, where these errors should be handled. We can
improve error handling capability of the compiler by trying
to recover from this error. A simple recovery scheme is to
change the return type of the overriding method so that it
same as that of the overridden method. In doing so, we need
to keep all other properties of the overriding method intact.
We have already modularized the related control dependen-
cies, identified the associated context and action to trigger in
the event of occurrence of this error. Hence, we can easily re-
use this information while implementing the error recovery
action. This concept of re-usability of pointcuts is more visi-
ble in FE RAspect,, are aspects where pointcuts are
defined as part of error-handler modularization. Essentially,
they intercept methods raising errors (such as red-colored
node with label C in the figure) to generate error reports
and make a safe exit from the program. If it is an excep-
tion condition, these aspects propagate back along the path
which led to this method execution and do proper exception
handling, as indicated by red-dashed arrows from nodes C
to B to A and then to Error.

As part of error recovery, aspects EEH Aspect,, will re-use
this pointcuts defined in FRAspect,,. At this point, if there
is need for additional contexts, besides those captured with
args() pointcut, we always have reflective access to them
through thisJoinPoint. These aspects will also instrument
the methods leading to error, and try to change the con-
text at the point of error so that compilation could proceed
further. This is shown by green dashed-arrows in
For example: in case of binary weaving, the only change
that error recovery involves is replacement of error reporter
from the advice with a call to proceed. Essentially, we con-
tinue current computation with corrected subMethod, with
all other formals remaining the same. So, the only addi-
tional work in this case is creating a corrected subMethod

Error Recoverer Aspects
(EHAspectl) (EHASpeCtZ) EHAspectnp

Reuse pointcuts in ERAspecty,
N

)

Exit

-
-~ Error Reporter Aspects
ERAspectl) [ERAspectz)
Pointcuts reused by ERAspectn

Figure 1: Separation of Concerns and Reusability of
Code: Artifacts of Modular Error Handling

(Functional) (Error)

SR

from the old one by using supMethod. The advice will now
look like one shown in |Listing 11

Similar is error recovery implementation in case of join
points matching checkMungerTobeAdded(..) pointcut. Here,
the advice incorporates execution of addInterTypeMunger(
ConcreteMunger munger) with corrected munger instead of
the old faulty munger. A point to note here is that: creat-
ing new munger with corrected return type is an expensive
operation. It is because we must discard some intermediate
states obtained after execution of addMunger(..) method
and create them all over again. This involves creating new
data structures, traversals over existing ones, and resolving
types in the world again.

The recovery algorithm implementation for the remaining
pointcut is also similar to this. Hence, we skip discussion of
the same. If any new errors stem from recovery attempts,
we issue a warning message so as to apprise users of the
attempted error recovery.

4. EVALUATION

As we contemplate modular error recovery, the first ques-
tion that arises is the cost and benefit of the idea. In com-
pilers, this means that we have to vouch for correctness and
peformance guarantees of our modularization. We begin this
section with a description of how this is done. Next, we
evaluate our idea from modularity perspective to examine
its re-usability, potential benefits, and any issues that might
occur in the process of modularization.

4.1 Correctness Assessment

A fundamental property of compilers is correctness. In
order to verify this property of our candidate compiler, we
made sure that it passed all the existing JUnit tests, and
the new ones that tested for correctness of error recovery.

4.2 Performance Assessment

For performance assessment, we compared elapsed time to
complete the JUnit tests in three different platforms. First,
is the Mac OS 10.5.6 running on an Intel core 2 Duo Mac-
Book 2.1 with 3 GB memory, 4MB L2 cache, 2.16 GHz pro-
cessor speed and 667TMHz bus speed. The second is Win-
dows XP operating system running on Sony Intel Pentium
dual core T3200 Laptop with 2GB memory, 1MB L2 cache,
2GHz processor speed and 667 MHz system bus speed. The

| Platform | Compiler | Time (sec) o |
Mac 08 X | pefvured | 9716 936
Ubuntu ?{Zis%ir?liltured ggig g(l)é
Windows XP | gt ned | 5779 10

Table 1: Performance Assessment

Concerns

Package LOC in Implementation
| AO modularized

org.aspectj || OO

. Error Detection
weaver 13548 | 13159 | 195 in aspects & Reporting
beel 16005 | 15702 | 677 in aspects || Detection, Repo-

-rting & Recovery
Total 29553 29733

Table 2: Assessing impacts of Modularization of Er-
ror Reporting and Recovery using LOC metric

third is the Mandriva Linux OS running on an Intel Core
2 CPU with 2.4 GB memory and 4 MB cache and 2.4 GHz
Processor Speed. Table shows the mean results of ten
different readings, along with standard deviations of the re-
sults, for both the original and the restructured ajc. We
found that modularization of error handlers with aspects re-
sulted in 0.5% increase in compilation time of the JUnit test.
This small differences between elapsed time for completion of
JUnit tests in the original compiler and error-modularized
compiler demonstrate that time overhead of aspectization
of error handlers is minimal, and can be safely ignored.
Note that the major source of this performance overhead
is attributable to expensive operations involved in recover-
ing from the “incorrect return type” error from an inter-type
declared method.

4.3 Modularity Assessment

shows the nature of error handling at the weaver
end of ajc. In the figure, the lines in red represent code
relating to error handling and are proportionate to the size
of the classes represented by white blocks. Before modular-
ization, the error handlers were scattered across 37 different
classes, and also methods within them, as indicated by dis-
persed red-lines within a single white block.

After our modularization endeavor, we were able to bring

Figure 2: Scattering of error handlers before modu-
larization

20

22

o

/* Report error on capturing invalid Type Pattern or Pointcut */
Object around(String patternOrPointcutString, AjAttributeStruct location):
/* Pointcuts where similar behavior has to be implemented are composed together x/
capturelnvalidTypePattern (patternOrPointcutString , location)
|| captureInvalidPointcut (patternOrPointcutString , location) {
try{
return proceed(patternOrPointcutString , location);
} catch (ParserException e){
AtAjAttributes.reportError ("Invalid "

4+ thisJoinPointStaticPart.getSignature ().getName (). replace("", "parse")
+ patternOrPointcutString + "’ : " 4+ e.toString()
+ (e.getLocation() == null ? "" : " at position "

+ e.getLocation (). getStart ()), location);
return null;
}
}

Listing 8: Advice to report error on finding invalid type pattern and pointcut while parsing AspectJ attributes

/+ Capture incorrect return type error during binary weaving of declare parents x/
pointcut checkCompatibilityOfReturnTypes (BcelClassWeaver weaver, ResolvedMember superMethod,
LazyMethodGen subMethod):
execution (private boolean BcelTypeMunger. enforceDecpRule4_compatibleReturnTypes(BcelClassWeaver ,
ResolvedMember, LazyMethodGen))
&& args(weaver, superMethod, subMethod);
Object around(BcelClassWeaver weaver, ResolvedMember superMethod, LazyMethodGen subMethod):
checkCompatibilityOfReturnTypes (weaver, superMethod, subMethod){
if (!superMethod.getGenericReturnType (). getSignature (). replace(’.?, ’/’).equals(
subMethod . getGenericReturnTypeSignature (). replace(’.?, 2/7)))
ResolvedType subType = weaver.getWorld (). resolve (subMethod.getReturnType ());
ResolvedType superType = weaver.getWorld (). resolve (superMethod.getReturnType ());

if (!superType.isAssignableFrom (subType)) {
weaver.getWorld (). getMessageHandler (). handleMessage (
MessageUtil.error ("The return type is incompatible with "

+ superMethod.getDeclaringType () + "." 4 superMethod.getName ()
+ superMethod.getParameterSignature (), subMethod
.getSourceLocation ()));

}

}

return proceed(weaver, superMethod, subMethod);

}

Listing 9: Pointcut to capture overriding methods with incorrect return types, during binary weaving

/* Capture incorrect return type error while weaving from source */
pointcut checkMungerTobeAdded (ResolvedType resType, ResolvedMember parent, ResolvedMember child):
cflow (execution (public void ResolvedType.addInterTypeMunger(ConcreteTypeMunger))
&& this(resType))
&& (execution(public boolean ResolvedType.checkLegalOverride (ResolvedMember, ResolvedMember))
&& args(parent, child))
&& if (! Modifier.isFinal (parent.getModifiers ()));

pointcut checkConflictWithExistingTypes ():
cflow (execution (private boolean ResolvedType.compareToExistingMembers (ConcreteTypeMunger, Iterator))
&& this(resType))
&& execution(public boolean ResolvedType.checkLegalOverride (ResolvedMember, ResolvedMember));

Object around(ResolvedType resType, ResolvedMember parent, ResolvedMember child):
checkMungerTobeAdded (resType, parent, child){
if (!(resType.world.isInJava5Mode () && parent.getKind () == Member METHOD)) {
if (!parent.getReturnType().equals(child.getReturnType())) {
resType.world.showMessage (IMessage .ERROR, WeaverMessages. format (
WeaverMessages .ITD_RETURN_TYPE MISMATCH, parent, child), child
.getSourceLocation (), parent.getSourceLocation ());
}
}

return proceed(resType, parent, child);

}

Listing 10: Pointcuts to capture inconsistent method overriding and advice to report this error while weaving
from source

N

Object around(ResolvedType resType, ResolvedMember parent,

checkMungerTobeAdded (resType, parent, child){

ResolvedMember child):

if (!(resType.world.isInJavab5Mode () && parent.getKind () == Member . METHOD)) {
if (!parent.getReturnType().equals(child.getReturnType())) {

ResolvedMember newChild = correctChild (parent ,

return proceed(resType, parent, newChild);
}
}
else return proceed(resType, parent, child);

}

child);

Listing 11: Advice to recover from inconsistent method overriding, at binary weaving level

e Tl e el L T T o Te Toce T Teoe T Lo Tees Towe L Teas T o Toe: Toes e L Roes Tt Toee L e L L L Too |

Figure 3: Error handling situation after modulariza-
tion

down the scattering of error handlers down to 26 classes.
Further, we were able to decrease scattering among different
methods within a class. This is visible from more condensed
red-lines within classes, as shown in

At this point, it was difficult to extract error handler from
all classes into aspects. This was primarily because the error
handlers were too much dependent upon the local context
within methods and classes, and it was not possible to mod-
ularize them with aspects alone.

4.4 Benefits of Modular Error Handling

Based upon our modularization endeavor in ajc, we pro-
vide a list of benefits of separating error handling from the
program and implementing it as a separate pluggable con-
struct. They are:

1. Quickened and simplified error handler detec-
tion: The join point model serves to define the loca-
tions and control flows associated with error handlers.
This makes it easy to identify error recognition loci,
because they are now well defined in their dedicated
place: the pointcuts.

2. Increased comprehensibility of error handlers:
In addition to control dependencies, pointcuts also ex-
pose the data dependencies associated with the error
handlers. From the list of formals and return values
in the pointcut definition, one can easily infer the data
dependencies of error handlers. This serves to improve
their comprehensibility.

3. Increased re-usability: From examples presented in
section 4, it is noticeable that the error recoverer as-
pects re-use the pointcuts that were used for error re-
porting. Correct error recovery schemes need to know

the precise sites of error occurrence, handling, the type
of exception being handled and the control flow of its
occurrence. All such information is encapsulated by
error reporting aspects (ERAspecty,). Later, the error
recovery aspects EH Aspect,,) re-use these pointcuts
to garner such information. Then, they replace the
erroneous node in the control flow path with a cor-
rected one. Other approaches to error recovery might
involve going back in the control graph and continu-
ing execution with changed contexts. This will then
allow computation to proceed further, as indicated by

green-dashed arrows in the

. Reduced Dependencies: In its present state, there

is tight coupling between several classes in ajc be-
cause of dependencies relating to error handlers. This
is shown by means of dependency structure matrix
(DSM) in Here, we consider the dependen-
cies arising only due to error concern. With the modu-
larization we have envisioned, the dependencies among
classes (represented by C1...,) resulting from error con-
cern will now look like one shown in After
aspect-oriented modularization of error handlers, the
dependency picture changes dramatically. Dependen-
cies among classes owing to error concern is now com-
pletely removed. That means the classes will no more
depend on the error concerns in other classes. Fur-
ther, the dependency direction is now changed such
that aspects (represented by Ai...,) responsible for er-
ror handling will now depend upon the existence of
these classes to collect required contexts. This new
dependency is visible in the lower part of the DSM in

1gure o

. Cleaner separation of concerns: Separation of er-

ror behavior of classes from normal functional behavior
makes it easier to understand what those two behav-
iors really are, because their implementations do not
collide in the same text. Additionally, as shown in
the control flows related to error handling are
separated from other functional control flows. With
traditional OO implementations, one would need to
propagate back along the control flow path in which
the error was raised in order to notify the enclosing
types about the error. In if the red-node C
is a method that raises an error, then as indicated by
red dashed-arrows, the compiler would have to prop-
agate back along the path of its control flow to ap-
prise the enclosing type about the error. This again
leads to contaminating the functional control with er-
ror control flow. However, with aspect oriented mod-

Figure 4: Dependency among classes because of er-
ror handlers

CLLELLLELELy — - -~ - - - - -~ - Crd1— - An
C1X
Cz X

Cn hiN
AX X XXX XXX XX XXXXXXXXXXXXX

~
1

S
X
ApX X XXX X XXX XXX XXXXXXXXXXXXXX X

Figure 5: Dependency among classes after modular-
ization of error handlers with aspects

ular implementations of error handlers, this would not
be necessary. As the control in which the error oc-
cured is already precisely captured by means of point-
cuts, one can use this information for appropriate error
handling. So, this prevents tangling of error and func-
tional control flows.

6. Increased flexibility in design decisions regard-
ing errors: Design decisions such as when, where and
how to do error handling are easily modifiable. This
benefit comes from the expressive power of the JPM.

These benefits, however, come at the expense of tiny perfor-
mance benefits, which are attributable to byte-code weaving
and error recovery computations. Overall, modular error
handling engenders key benefits at the cost of modest per-
formance overhead.

4.5 Issues in Modularizing Error Recovery

Besides performance and correctness, modularizing error
recovery has to contend with a number of serious difficulties
which may not be visible outright. Some of them are:

1. Masking of error handling advices by foreign aspects:
It is possible that an unbounded foreign aspect com-
pletely replaces our desired computation by introduc-
ing new advice around adviceexecutions related to error
handlers.

2. Error handling at undesired phases: AspectJ does not
provide any explicit means of controlling order of appli-
cation of multiple aspects at the same join point. Thus,
any unintended order of aspect composition may affect
error handling behavior in ways unanticipated by the
developers.

3. Side effects of error handlers: Unbounded pointcuts
may result in advice weaving at unintended points.
However, strictly bounded pointcuts may prove too
restrictive at times [14]. Hence, it is difficult to cor-
rectly identify the circumstances in which foreign as-
pects might need bounded and unbounded pointcuts.

Although we have identified few such issues, there certainly
remain other issues that might afffect modularization of er-
rors. Their identification and implementation remains as a
part of the future work.

S. RELATED AND FUTURE WORK

Others have attempted to modularize error handling con-
cern. Lippert and Lopes|12] carried out a study to assess
the suitability of aspects for separation of exception han-
dling code from normal application code. Likewise, Adrian
et al.[3] carried out a similar study to separate exception
handlers from middleware. Lippert and Lopes’s study was
later complemented by Castor et al.[6] by means of aspect-
oriented refactoring of error handling in different real-world
applications. Their study concluded that although aspecti-
zation of exception handlers created increased opportunities
for reuse, and decreased interference in the program texts;
they are not always sufficient to encapsulate all kinds of ex-
ceptions. Further, they concluded that it is difficult to re-use
the exception-related artifacts in practice.

Another study that investigates exception handling in an
aspect-oriented setting is by Karin et al |9]. This work pri-
marily deals with restoring the safe state of objects, after a
method throws an exception and terminates abruptly.

None of these studies have however, identified the poten-
tial for artifact and knowledge re-use for error recovery that
comes from carefully implemented modular error handlers.
This paper extends the findings and conclusions of the afore-
mentioned papers to modularize error recovery.

Castor Filho et al.[5] have carried out an interesting study
of the interplay between aspects and exceptions. They pro-
vide a catalog of exception handling scenarios and use it to
guide aspectization of exception handling. This paper does
not describe how the implementation strategies and hence,
their guidelines would change in situations where developers
wanted to capture the context of the exceptions too. A fu-
ture project might be to create a catalog of exceptions along
with the control flow in which they occur, the context they
would use and delimit the interface between application code
and error handling aspects. This study would then be more
useful and complete in its purpose as a guide to desirable
and undesirable aspectizations relating to error concern.

Another recent development in this field is EJFlow|2].
There, the authors extend the AspectJ language with ad-
ditional syntax to track the flow of exceptions in a program
and provide global views of exception control flows. They
propose a construct called “an explicit exception channel”
that captures the location of exception raisers, handlers and
other intermediate sites, type of exception, and a list of ex-
ceptions that must be signaled to the enclosing context. Es-

sentially, this is a bunch of abstract pointcuts composed to-
gether, which the users could later concretize to define their
exceptions and pertaining contexts. The major limitation
of this tool is that: it lacks the power of cflow pointcuts.
For instance, consider an exception that can occur within a
single static location. Depending upon the control flow and
context associated with this exception, the way errors are re-
ported and handled could be totally different. This applies
to those exceptions as well, which are raised from the same
static locations in the program code. Remember the ways
in which error reporting and later recovery differed for dif-
ferent levels of weaving in ajc, even if the error was same in
both cases and was raised from the same location. EJFlow
fails to handle such contexts associated with exceptions, in
its present form.

Most of these efforts try to modularize exception handlers
for different goals. However, none of them focus on error re-
covery issues and the ways in which we could leverage mod-
ular error handling to realize modular recovery quickly and
easily. Further, unlike other papers, we describe how this
could be done. However, it should be noted that this paper
does not exercise any sophisticated error recovery schemes.
It only provides an illustrative implementation of simple er-
ror reporting and recovery techniques to demonstrate the
successs of our modularization efforts. Implementation of
more complex and efficient error recovery techniques re-
mains as future work.

6. CONCLUDING REMARKS

‘We have shown how error recovery can be modularized by
leveraging the expressive and encapsulation powers of AOP.
This is the first published description of how to implement
modular error recovery in compilers and define the control
flow pertaining to error handlers without any language ex-
tensions. In contrast to other proposals, this study identifies
how modularizing error handling provides opportunities for
re-using existing software artifacts and knowledge to create
and add new error recovery schemes.

Error handling and recovery often involves comprehend-
ing and modifying an unfamiliar and complex code base.
Our approach makes it easier to quickly identify the source
and location of errors, understand their behavior and test
new recovery schemes. To facilitate this process, this work
addresses queries such as

e what is the control flow in which this error occurs?
e what is the context at the error site?

e which part of code accommodates a new error recovery
flow path?

e how would the system behave in the absence of error
recoverers?

e how to capture this error in yet another site?

Answers to such queries provide users with a broader per-
spective of error concerns in the system - such as structural,
relational and behavioral - by the use of static and dynamic
information. These sources of information all help the devel-
opers make better informed decisions about error recovery.

We experimentally demonstrate that, in exchange for mod-
est runtime overhead, error recovery modularization leads to
aforementioned benefits, in addition to a clean separation of
error concerns from functional concerns.

Current study provided only a prototype implementation
of modular error handling and recovery. Our ongoing work
encompasses more extensive error recovery, and an analysis
of the re-usability of pointcuts that comes with added re-
covery schemes. For this, we intend to provide a taxonomy
for errors in compilers based on the similarity of their as-
sociated contexts, reporting and handling sites, and control
flows of occurrences.

7. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley
Publishing Company, 2006.

[2] N. Cacho, F. C. Filho, A. Garcia, and E. Figueiredo.
EJFlow: Taming exceptional control flows in
aspect-oriented programming. In AOSD 08, pages 72—-83,
New York, NY, USA, 2008. ACM.

[3] A. Colyer, A. Clement, R. Bodkin, and J. Hugunin. Using
AspectJ for component integration in middleware. In
OOPSLA 03, pages 339-344, New York, NY, USA, 2003.
ACM.

[4] R. P. Corbett. Static semantics and compiler error

recovery. PhD thesis, 1985.

Fernando, Castor, A. Filho, C. Garcia, Mary, F, and

Rubira. Extracting error handling to aspects: A cookbook.

In ICSM, pages 134-143. IEEE, 2007.

[6] F. C. Filho, N. Cacho, E. Figueiredo, R. Maranh ao,

A. Garcia, and C. M. F. Rubira. Exceptions and aspects:
the devil is in the details. In F'SE 06, pages 152-162, New
York, NY, USA, 2006. ACM.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns: elements of reusable object-oriented software.

Addison-Wesley Professional, 1995.

E. Hilsdale and J. Hugunin. Advice weaving in aspectj. In

AOSD 04, pages 26-35, New York, NY, USA, 2004. ACM.

K. Hogstedt. Automatic detection and masking of

nonatomic exception handling. IEEE Transactions on

Software Engineering, 30(8):547-560, 2004.

[10] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Aksit and S. Matsuoka, editors,
ECOOP ’97, volume 1241, pages 220-242. Springer-Verlag,
Berlin, Heidelberg, and New York, 1997.

[11] K. J. Lieberherr and D. Orleans. Preventive program
maintenance in Demeter/Java. In ICSE ’97, Boston, MA,
2004. ACM.

[12] M. Lippert and C. V. Lopes. A study on exception
detection and handling using aspect-oriented programming.
In ICSE 00, pages 418-427, New York, NY, USA, 2000.
ACM.

[13] B. Liskov and J. Wing. A behavioral notion of subtyping.
TOPLAS, 16(6):1811-1841, Nov. 1994.

[14] N. McEachen and R. T. Alexander. Distributing classes
with woven concerns: an exploration of potential fault
scenarios. In AOSD 05, pages 192-200, New York, NY,
USA, 2005. ACM.

[15] M. P. Robillard and G. C. Murphy. Designing robust Java
programs with exceptions. In F'SE ’00, pages 2—10, New
York, NY, USA, 2000. ACM.

[5

8

9

	Introduction
	Error Recovery
	Error Recovery in ajc

	Design of Modular Error Handlers
	Modularizing MissingType Error Handler
	Modularizing Parsing Error Handler
	Modularizing InCorrectReturnType Error Handler

	Evaluation
	Correctness Assessment
	Performance Assessment
	Modularity Assessment
	Benefits of Modular Error Handling
	Issues in Modularizing Error Recovery

	 Related and Future Work
	Concluding Remarks
	References

