
Draft—Do not distribute.

No-Brainer CPS Conversion
A functional pearl

Milo Davis William Meehan Olin Shivers
Northeastern University

{mdavis,wmeehan,shivers}@ccs.neu.edu

Abstract
Algorithms that convert direct-style λ-calculus terms to their equiv-
alent terms in continuation-passing style (CPS) typically introduce
so-called “administrative redexes”: useless artifacts of the conver-
sion that must be cleaned up by a subsequent pass over the result to
reduce them away. We present a simple, linear-time algorithm for
CPS conversion that introduces fewer administrative redexes than
any other linear-time algorithm of which we are aware. In fact, the
output term is a normal form in a reduction system that generalises
the notion of “adminstrative redexes” to what we call no-brainer
redexes”, that is, redexes whose reduction shrinks the size of the
term. Of the four possible types of no-brainer redexes, three simply
do not occur in the result. We state the theorems which establish
the algorithm’s desireable properties, along with sketches of the
full proofs.

1. Introduction
Continuation Passing Style (CPS) is a variant of λ-calculus which
has both theoretical and practical uses. CPS has two advantages
over standard λ-calculus: it fixes evaluation order and names all in-
termediate computations. In fact, once the evaluation order is fixed
by CPS, it is invariant to switches between call-by-name (CBN) and
call-by-value (CBV) semantics. Plotkin used this property of CPS
to prove a simulation between these two evaluation strategies [7].

When proving this simulation, Plotkin had to contend with
additional complexity from “administrative redexes”; additional
redexes introduced during the conversion of the direct-style (DS)
term that are not present in the original term. To deal with this issue,
Plotkin used the Colon transformation which effectively handles
the issue in his theoretical context.

Less theoretical uses of CPS require terms to actually be re-
duced because even simple terms can grow significantly during the
conversion process if administrative redexes are not eliminated. We
provide an example DS term and the result of converting it with
different algorithms below to illustrate the cost of administrative
redexes and the effectiveness of previous conversion algorithms.
Note that for clarity we use the standard λ-calculus in this section,
but we switch to a scheme-like language in Section 2.

DS Term
(λ x.x) (λ x.x)
Fisher/Reynolds algorithm
λ k1.(λk2.k2 (λx.λk3.k3 x))
λ m.(λk2.k2 (λx.λk3.k3 x)) λ n. m n k1

After Steele noted that CPS made a good intermediate language
for compilers [10], a series of transformations were developed that
yielded fewer and fewer administrative redexes. Algorithms like the
Danvy/Filinski algorithm [5] are able to generate syntax free from

DEFINITION 2.1 (DS syntax).

dsvar ∈ DSVAR ::= y DS Variable reference

e ∈ DS ::= dsvar

| (fun y e) Function abstraction

| (e e) Application

| (if e e e) Conditional

Figure 1. Direct-style Syntax

administrative redexes, which allow them to generate smaller terms
than the naive algorithm.

The Danvy/Filinski algorithm
λ k1. (λk2.k2 (λx.λk3.k3 x))

(λk2.k2 (λx.λk3.k3 x)) k1

In this paper, we present a new CPS transformation for CBV λ-
calculus, based on a defunctionalized version of the Danvy/Filinski
algorithm. In linear time, we can produce a term free from administrative-
redexes. Our algorithm also produces terms in the normal form of
the No-Brainer reduction system, a superset of the administrative
reductions that produces a strictly smaller term while preserving
CBV semantics. Appel and Jim presented a similar set of reduc-
tions that was used in the SML/NJ compiler during the lexical
analysis phase in [2]. However, their algorithm operated on terms
after they were transformed to CPS whereas ours combines these
two phases into a single transformation. The benefits of these ad-
ditional reductions can be seen when converting our example term
with our transformation.

Smart algorithm
λ k1.k1 (λx.λk3.k3 x)

In Section 2 we present the scheme-like language we are us-
ing instead of the pure λ-calculus. In Section 3 we introduce the
No-Brainer reduction system and prove its various properties. Sec-
tion 4 contains a derivation of our Smart algorithm from the stan-
dard Fisher/Reynolds algorithm. This algorithm implements the
No-Brainer reduction system. We then state theorems about its cor-
rectness and provide proof sketches. In this section we also intro-
duce a new type of syntax constructor which we use to simplify our
transformation. Section 5 includes a discussion of a series of vari-
ations and extensions that help scale our core calculus to a fully-
featured programming language. In Section ??, we conclude with
remarks about our algorithm and directions for further work.

2. Notation
We have elected to use a scheme-like language as an alternative
to pure λ-calculus. This gives us a clear separation between our

1 2016/3/11

DEFINITION 2.2 (CPS syntax).

triv ∈ TRIV ::= x CPS Var reference

| (lam (x k) p) λ-term

p ∈ CPS ::= (call triv triv cont) Function app

| (ret cont triv) Cont app

| (if triv p p) Conditional

| (letc (k cont) p) Cont binding

cont ∈ ABS-CONT ::= k Cont var ref

| (cont x p) Cont λ-term

| halt Halt constant

Figure 2. CPS Syntax

DS and CPS syntaxes and allows us to clearly follow the stack
operations performed by the compiler. That being said, Both our
Direct-Style (Figure 1) and CPS syntaxes (Figure 2) can be easily
expressed in the standard λ-calculus. To make our language a more
realistic model of a functional language, we have included if as
a syntactic form. We also have included the constant halt which
returns the value produced by the last expression in CPS. We also
have an operation nref which takes a variable and an expression
and returns the variable’s occurence count in the given term. For
example, nref (y, (fun y2 y)) = 1. Note that we use nref to
count occurences in both DS and CPS terms. Finally, we have
the standard function FV which takes a term and returns the set
containing its free variables.

The additional reason we have included if is to demonstrate
the propper way to avoid duplicating continuations during its con-
version. If the conversion of if, when improperly handled, leads to
code explosion when the continuation is duplicated in both the then
and else branches. This effect is worsened with nested if expres-
sions. Below we present an example of this issue.

((if x y z) (g false))

Incorrectly converting this can cause the continuation to the con-
ditional to be replicated down both arms of the result CPS condi-
tional:

(if x
(ret (cont f (g false (cont a (f a halt))))

y)
(ret (cont f (g false (cont a (f a halt))))

z))

We must let-bind the continuation to rule out the possibility of
exponential term growth:

(letc (k (cont f
(call g false (cont a (f a halt)))))

(if x (ret k y) (ret k z)))

Our language evaluates with semantics relatively similar to
those of standard CPS. We have two application forms, call and
ret. The first step when we reduce these forms is the same: we
substitute the trivial term for the function’s first parameter in the
function’s body. However, lam terms step to letc with the con-
tinuation bound to the function’s second parameter. From there, a
second k for cont substitution finishes the evaluation of the call.
The if form evaluates as expected, and halt returns the final value
of the program, terminating the computation.

3. The No-Brainer Reduction System
Inlining is an important optimization performed by compilers. We
use abstract reduction systems as a convenient formalization for in-
lining. Though highly optimizing compilers may have complicated
heuristics for reduction, we address only a few relatively simple
rewrite rules.

The intuition behind the No-Brainer reduction system is that
we remove unnecessary bindings and inline values that will not
increase the overall term size. For instance, replacing one variable
with another will not change the term’s size because all variables
are the same size, and we can easily inline constants as long as their
term size is as small as variables. We also want to inline function
abstractions, especially because this can lead to reduction cascades,
in which we can create more potential redexes where we inline the
definition. However, if we do this in an undisciplined way, we may
cause the size of our program to grow exponentially or cause our
optimizations not to terminate. We can avoid both issues by inlining
only when the variable to which a lam or cont term is bound occurs
once. We include η-reduction as another way to decrease term size.
We consider these reductions to be “No-Brainers” because they are
all simple transformations that reduce term size and because they
are obvious wins for the end user.

No-brainer reductions are semantics-preserving and can be ap-
plied to both CPS and DS terms. No-brainer redexes are designed to
generalize the idea of “administrative reductions”, so a term in No-
Brainer normal form (NBNF) will also be in a normal form with
respect to administrative reductions. For the purposes of our algo-
rithm, we are only concerned with performing these reductions in
CPS, so we present the reduction system and the proofs of its prop-
erties in our CPS Syntax. For a formal definition of No-Brainer
Reduction, see Figure 3.

This reduction system is similar to the “shrinking-inlining”
system created by Appel and Jim [2] for the SML/NJ compiler.
However, we include η-reduction and omit their “dead-variable-
elimination rule”, which eliminates functions abstractions bound
to variables when the variable does not appear in the term. We
would not break normalization or confluence by introducing this
rule, but we would lose the ability to reach a normal form with
a constant number of passes over the syntax tree. Appel and Jim
showed that a small number of passes eliminates the vast majority
of these redexes, though we cannot identify and eliminate them all
without an algorithm slower than linear time. The consequences of
extending the No-Brainer system with this additional optimization
rule are discussed further in Section 5.

When developing heuristics for inlining, it is important that the
rules have two properties: strong normalization and confluence. A
reduction system is strongly normalizing when there is no infinite
series of reductions that can be applied to a term. The system is con-
fluent if a given term can reach some reduced term no matter which
reduction is taken first. While β-reduction, the traditional opera-
tional semantics of the λ-calculus, is confluent, it is not strongly
normalizing. This means that reduction is not guaranteed to termi-
nate, as can easily be demonstrated by the Ω combinator, but when
it does terminate, the result will be the same regardless of the or-
der of reductions performed. The restrictions we have placed on
β-reduction will make it strongly normalizing. In Section 3.1, we
will prove that the No-Brainer system has both of these properties.

3.1 Proofs of Properties
NBR’s greediness characterizes it as a local optimization, which
allows us to easily produce smaller terms than previous reductions
on CPS terms. Normalization provides us with a guarantee that an
implementation of the system will not cause an infinite reduction
path, and confluence allows us to be unconcerned with the order in
which we carry out reductions.

2 2016/3/11

DEFINITION 3.1 (βcv). β-reduction where the argument is a con-
sant or variable

• (call (lam (x1 k) p) x2 c)
−−→
βcv

(letc (k c) p[x1 7→x2])

• (call (lam (x k1) p) t k2)
−−→
βcv

(ret (cont x p[k1 7→k2]) t)

• (ret (cont x1 p) x2) −−→
βcv

p[x1 7→x2]

• (letc (k1 k2) p) −−→
βcv

p[k1 7→k2]

DEFINITION 3.2 (βλ1). β-reduction where the argument is a
lambda term and the bound variable occurs exactly once in its
scope

• (call (lam (x1 k1) p1) (lam (x2 k2) p2) c)
−−→
βλ1

(letc (k1 c) p1[x1 7→(lam (x2 k2) p2)])

where nref (x1, p1) = 1
• (call (lam (x1 k1) p1) t (cont x2 p2))
−−→
βλ1

(ret (cont x1 p1[k1 7→(cont x2 p2)]) t)

where nref (k1, p1) = 1
• (ret (cont x p1) (lam (x2 k) p2))
−−→
βλ1

p1[x 7→(lam (x2 k) p2)] where nref (x, p1) = 1

• (letc (k (cont x p2)) p1)
−−→
βλ1

p1[k 7→(cont x p2)] where nref (k, p1) = 1

DEFINITION 3.3 (η). classic η-reduction

• (lam (x k) (call t x k)) −→
η
t x, k /∈ FV (t)

• (cont x (ret c x)) −→
η
c x /∈ FV (c)

Figure 3. The No-Brainer Reduction System

DEFINITION 3.4 (Size of CPS Terms).

size(x) , 1

size((lam (x k) p)) , size(p) + 2

size((call t1 t2 c)) , size(t1) + size(t2) + size(c) + 1

size((ret c t)) , size(c) + size(t) + 1

size((if t p1 p2)) , size(t) + size(p1) + size(p2) + 1

size((letc (k c) p)) , size(c) + size(p) + 1

size(k) , 1

size((cont x p)) , size(p) + 1

size(halt) , 1

Figure 4. Definition of term size in our CPS notation

The following proofs are modeled after those in Barendregt [3].
Similar proofs can also be found in [2].

THEOREM 3.1 (Term Size Optimization).

∀p1, p2 ∈ CPS, p1 → p2 =⇒ size(p1) > size(p2)

Proof Sketch: By case analysis on the definition of no-brainer
reduction, where size is defined as in Figure 4.

This property is essential to the notion of no-brainer reductions.
The reductions are “no-brainer” precisely because they cause an
immediate and obvious reduction in term size while preserving
operational semantics.

THEOREM 3.2 (Strong Normalization).

∀p ∈ CPS,

@ an infinite reduction sequence p→ p′ → p′′ → . . .

Proof Sketch: By Theorem 3.1 and structural induction on the
term, using term size as a measure.

We now have a guarantee that there are no infinite reduction
paths in the no-brainer system. Thus, we can implement the system
algorithmically without having to worry whether the optimizations
will fail to terminate. This also means that we can ensure that our
algorithm’s output is an NBNF. If this were not the case, our output
might have been partially reduced, but we would not know if we
had correctly eliminated all No-Brainer redexes.

While classic βη-reduction is known to be confluent, we must
prove this property for the no-brainer system. We will accomplish
this by proving each individual reduction of the system is confluent,
and then demonstrating that they commute.

LEMMA 3.3 (Local Confluence of βcv and βλ1).

∀p, p′, p′′ ∈ CPS s.t. p −−→
βcv

p′ ∧ p −−→
βcv

p′′,

∃p′′′ ∈ CPS with p′ −−→
βcv

∗ p′′′ ∧ p′′ −−→
βcv

∗ p′′′

∀p, p′, p′′ ∈ CPS s.t. p −−→
βλ1

p′ ∧ p −−→
βλ1

p′′,

∃p′′′ ∈ CPS with p′ −−→
βλ1

∗ p′′′ ∧ p′′ −−→
βλ1

∗ p′′′

Proof Sketch: Styled after a proof from Barendregt [3]. For each
reduction, we inductively define a relation with the intention that
the reduction is its transitive closure. So we prove βcv and βλ1
are locally confluent by proving that the relations are both locally
confluent.

LEMMA 3.4 (Commutativity of βcv and βλ1).

∀p ∈ CPS,∀p′, p′′ s.t. p −−→
βcv

p′, p −−→
βλ1

p′′

∃ p′′′ s.t. p′−−→
βλ1

∗p′′′ ∧ p′′−−→
βcv

∗p′′′

Proof Sketch: By case analysis on the definition of βcv . We ac-
complish this using context grammars, considering a particular βcv
redex within a term. (See Figure 6.)

For the remainder of the section, we use β to refer to βcv and
βλ1 combined.

LEMMA 3.5 (Confluence of No-Brainer β-reduction).

∀p, p′, p′′ ∈ CPS s.t. p −→
β
p′ ∧ p −→

β
p′′,

∃p′′′ ∈ CPS with p′ −→
β

∗ p′′′ ∧ p′′ −→
β

∗ p′′′

Proof Sketch: By Lemma 3.3, Lemma 3.4, and Proposition 3.3.5
in Barendregt [3].

Classical η-reduction is known to be confluent ([3], Theorem
3.3.7), so to show that the no-brainer reduction system is also
confluent, it suffices to show that η-reduction commutes with our
restricted β-reduction.

3 2016/3/11

DEFINITION 3.5 (Direct-Style Reduction Context).

CDS ::= [·]
| (fun y CDS)

| (CDS e) | (e CDS)
| (if CDS e e) | (if e CDS e)

| (if e e CDS)

DEFINITION 3.6 (CPS Reduction Context).

CCPS ::= [·]
| (lam (x k) CCPS)

| (call CCPS t c) | (call t CCPS c)

| (call t t CCPS)

| (ret CCPS t) | (ret c CCPS)

| (if CCPS p1 p2)

| (if t CCPS p) | (if t p CCPS)

| (letc (k CCPS) p) | (letc (k c) CCPS)

DEFINITION 3.7 (Reduction Inference Rules).

p1 → p2

C[p1]→ C[p2]

t1 → t2

C[t1]→ C[t2]

c1 → c2

C[c1]→ C[c2]

Figure 5. Reduction in Context

LEMMA 3.6 (Commutativity of β and η).

∀p ∈ CPS,∀p′, p′′ s.t. p −→
β
p′, p −→

η
p′′

∃ p′′′ s.t. p′−→
η

∗p′′′ ∧ p′′−→
β

∗p′′′

Proof Sketch: Diagrammatically using reduction context, as in
our proof of Lemma 3.4. We consider every possible η-redex,
performing β-reduction in context and subexpressions.

THEOREM 3.7 (Global Confluence of NBR).

∀p ∈ CPS, ∀p′, p′′ ∈ CPS with p→ p′, p→ p′′,

∃p′′′ ∈ CPS with p′ →∗ p′′′ ∧ p′′ → p′′′

Proof Sketch: By Lemma 3.5, confluence of η-reduction, and
Lemma 3.6.

Now that we have proven the no-brainer system normalizing
and confluent, we can refer to “the normal form” of a given term
and be guaranteed that it is unique, no matter which reductions
we take locally. This allows us to implement our CPS-conversion
algorithm deterministically, as we can make reductions everywhere
we find a redex and not have to worry whether it will lead to a
different translated term.

These reductions form a strong foundation for a compiler’s in-
lining mechanism. As these reductions also do not require complex
analyses to identify, we can implement these reductions during the
transformation to CPS. In Section 4, we show how to do exactly
that.

4. The Algorithm
We will systematically derive out transformation from a version of
the Fisher/Reynolds algorithm translated into our syntax (Figure 7).

The Fisher/Reynolds algorithm is garenteed to produce a valid CPS
term, but performs no reductions. It is possible to reduce the algo-
rithm’s output after it has generated syntax, but that would require
us to generate the larger term before another pass over the source
tree created our desired result. This approach is costly in terms of
both time and memory, so instead we seek to fuse those two passes
into a single, linear-time transformation. The relationship between
these approaches is shown in the commutativity diagram below.

DS

CPS CPS/NBNF

F/R
Smart

NBR

The derivation of our transformation takes place in two stages.
In the first stage, we will define a Dumb algorithm with the same
structure as our Smart algorithm, but that performs no reductions
and produces terms α-equivalent to the Fisher/Reynolds algorithm.
In the second stage, we will change the operations of the Dumb
algorithm to those of the Smart algorithm.

We convert the Fisher/Reynolds algorithm into the Dumb algo-
rithm by abstracting over the syntax generation mechanisms of the
Fisher/Reynolds algorithm. After we change the data representa-
tion of syntax during the conversion, it becomes significantly easier
for us to perform reductions.

First, we abstract over the generation of continuation syntax.
The essence of the CPS transformation is the reordering of terms so
that the results of nested applications from the DS term are bound
to continuation variables. We use a data structure that captures the
same information as syntactic continuations of the Fisher/Reynolds
algorithm to save the outer applications until we are finished con-
verting their dependencies. Our data structure takes one of five pos-
sible forms, all from cases of the Fisher/Reynolds algorithm. In the
application case of Fisher/Reynolds algorithm, we can identify two
types of continuations: those waiting for a function and those wait-
ing for a variable. There is an additional continuation type in the if
case: the continuation waiting for a boolean value. Finally, there are
continuation variables introduced by cont and letc and the base
halt continuation. With these observations, we can convert these
pieces of syntax into a data structure that captures the same infor-
mation. In our more complex algorithm, we will use case analysis
on the terms that would be bound to the continuation’s parameter
to reveal reduction opportunities. The ability to perform this case
analysis is the core reason for us to convert continuation syntax into
a data structure.

As our data structure will contain DS terms in three of our five
cases, we are forced to contend with the issue of variable freshness.
When dealing solely in mathematics, asserting a variable’s fresh-
ness in a side condition is sufficient, but a practical implementation
of a CPS algorithm will almost always require the replacement of
DS variables to ensure no capture occurs. This is usually done using
a symbol table which provides a partial mapping from DS variables
to their CPS counterparts. In the Smart algorithm, this symbol ta-
ble is essential for reductions, but for now, its only purpose is the
generation of fresh variables during the conversion.

Abstracting this syntactic information into a data structure will
help us when we perform reductions, but it does us little good
unless we can convert the data structure back into syntax. To turn
this data structure into syntax, we define a function blesscd , used
when we put a continuation in its final resting place. This function,
notated c̃c, converts a continuation data structure into syntax. Both
the data structure, and the function to convert it into syntax are
defined in Figure 8.

4 2016/3/11

C[(call (lam (x1 k) p) x2 c)]

C′[(call (lam (x1 k) p) x2 c)]

C[(letc (k c) p[x1 7→x2])]

C[(call (lam (x1 k) p′) x2 c)]

C′[(letc (k c) p[x1 7→x2])] C′[(letc (k c) p[x1 7→x2])]

βλ1 βcv βλ1

βcv βλ1 βλ1
βcv

(a) Commutativity of βλ1 with the first βcv rule

C[(call (lam (x k1) p) t k2)]

C′[(call (lam (x k1) p) t k2)]

C[(ret (cont x p[k1 7→k2]) t)]

C[(call (lam (x k1) p′) t k2)]

C′[(ret (cont x p[k1 7→k2]) t)] C′[(ret (cont x p[k1 7→k2]) t)]

βλ1 βcv βλ1

βcv βλ1 βλ1
βcv

(b) Commutativity of βλ1 with the second βcv rule

C[(ret (cont x1 M) x2)]

C′[(ret (cont x1 M) x2)]

C[M [x1 7→x2]]

C[(ret (cont x1 M ′) x2)]

C′[M [x1 7→x2]] C[M ′[x1 7→x2]]

βλ1 βcv βλ1

βcv βλ1 βλ1
βcv

(c) Commutativity of βλ1 with the third βcv rule

C[(letc (k1 k2) M)]

C′[(letc (k1 k2) M)]

C[M [k1 7→k2]]

C[(letc (k1 k2) M ′)]

C′[M [k1 7→k2]] C[M ′[k1 7→k2]]

βλ1 βcv βλ1

βcv βλ1 βλ1
βcv

(d) Commutativity of βλ1 with the fourth βcv rule

Figure 6. Commutativity of βcv and βλ1

DEFINITION 4.1 (The Fisher/Reynolds algorithm).

P e cont ,

(ret cont x) e = y

(ret cont (lam (x k) (P e k))) e = (fun y e), x fresh
(P ef (cont xf (P ea (cont xa (call xf xa cont))))) e = (ef ea), xf fresh
(letc (x cont) (P e1 (cont xb (if xb (P e2 k) (P e3 k))))) e = (if e1 e2 e3), k fresh

Figure 7. The Fisher/Reynolds algorithm

c ∈ ABS-CONT ::= halt halt

| k k

| FCont(e, E, c) (cont xa (ret (cont xa (PE e E ACont(xa, c))) xf))

| ACont(a, c) (cont xf (call xf ãv c̃c))

| ICont(e1, e2, E, c) (cont xb (letc (j c̃c) (if xb (PE e1 E j) (PE e2 E j))))

Figure 8. Continuation Data Structure

a ∈ ABS-TRIV ::= x x

| 〈(fun y e), E〉 (lam (x k) (PE e E[y 7→ x] k)) x, k fresh

Figure 9. Abstracted Trivial

5 2016/3/11

DEFINITION 4.2 (The extended Fisher/Reynolds algorithm).

PE e E c ,

(ret c̃c Ẽ[y]

v
) e = y

(ret c̃c (lam (x k) (PE e E[y 7→ x] k))) e = (fun y e), x, k fresh
(PE ef E FCont(ea, E, c)) e = (ef ea), xf fresh
(letc (j c̃c) (PE e1 ICont(e2, e3, E, j))) e = (if e1 e2 e3), j fresh

Figure 10. The Fisher/Reynolds algorithm with environments and continuation data structures

When we call P on the initial DS term, our algorithm proceeds
by two mutually recursive steps. First, we shift the direct-style term
into the continuation until we reach a trivial DS value. Next, we
reify the continuation, which may require us to return to the first
phase of the algorithm. We repeat this process until the algorithm
terminates, which it is guaranteed to do because each recursive call
reduces either the DS term or the continuation data structure.

When we perform reductions, fun terms might be reified in
a different context than where they begin in the source term. To
avoid variable capture, we package up these “delayed” user func-
tions with an additional symbol table. Now each user function car-
ries its context with it as we move it through the algorithm. This
data structure, (notated 〈(fun y e), E〉) which we call a “static
closure”, corresponds to the data structure which we use to delay
continuations.

We manipulate static closures in much the same way we ma-
nipulate the continuation data structure. When we first encounter
a function abstraction, we pair it with its environment, introduc-
ing a static closure. Next, we move it around the algorithm until it
reaches its final location. In the Dumb algorithm, this movement is
trivial, however in the Smart algorithm, we might move a static clo-
sure multiple times before we bless it using the function blessv . As
the No-Brainer β-reduction rules also address variables, we create
a variant type comprised of static closures and CPS variables. We
extend blessv to produce syntax from CPS variables by returning
them unchanged. We say that an abstracted trivial or continuation
has been blessed when it has been converted to concrete syntax
by blessv or blessc . The bless function for values, notated ãv , is
defined next to each variant of the abstract-trivial data type in Fig-
ure 9.

To inline abstract trivial terms, we change the domain of our
symbol table from CPS variables. The type of a symbol table is
now (E : DSVAR ⇀ ABS-TRIV). We use the term “static envi-
ronment” to refer to these symbol tables that map DS variables to
arguments. There are two operations we can perform on environ-
ments: looking up a variable in the environment and extending the
environment with a new binding. These operations are notatedE[y]
and E[y 7→ a].

To avoid any variable name collisions, when a DS variable is
introduced, we create a new entry in our environment which maps
that DS variable to a fresh CPS version. We consider a variable to
be fresh if it does not occur in the current term and does not occur
in the environment. When we encounter a variable reference in a
context other than its introduction, we perform a lookup operation
on the variable and replace it with the value in the environment.
This means that any value we place in the environment will re-
place the DS variable to which it is bound. As the values returned
from lookup might be static closures, when they reach their final
placement, we use blessv to convert them into concrete syntax. In
the Smart algorithm, we often feed the results of lookup into other
functions, creating cascades of reductions. These operations corre-
spond to the environment model of λ-calculus β-reduction. This is
in contrast to the substitution model of β-reduction used in Sec-
tion 3.

C : DS→ ENV → ABS-CONT → CPS

Ret : ABS-CONT→ ABS-TRIV → CPS

Call : ABS-TRIV → ABS-TRIV → ABS-CONT → CPS

blessc : ABS-CONT → ABS-CONT

blessv : ABS-TRIV → TRIV

If : DS → DS → ENV → ABS-CONT → CPS

Figure 11. Constructor Signatures

We compose these new functions to form a version of the
Fisher/Reynolds algorithm which utilizes static environments to
replace user variables with their CPS equivalents. We do not yet
place static closures in the environment as this would β-reduction
them. To differentiate the versions of the algorithm, we rename the
toplevel function of this new algorithm PE . This new version of
the algorithm is defined in Figure 10.

Though this algorithm will produce terms in the same style as
the original Fisher/Reynolds algorithm, the introduction of envi-
ronments weakens our guarantee that a valid CPS term will be
produced. Because lookup is only partial, our algorithm will er-
ror when it encounters a variable it has not seen. Without an ad-
ditional precondition, any theorem about the algorithms output is
predicated on its termination without a failed lookup. We define a
well-formedness property for term-environment pairs and an anal-
ogous property for continuations so that when we convert a term
with this property, lookup will not error. Theorem 4.1 proves that
this property is preserved on all recursions of all algorithms we de-
fine that use the environment.

DEFINITION 4.3 (Environment Well-formedness property).

(e, E) ∈ W iff FV (e) ⊂ domain(E) ∧
∀r ∈ range(E), r ∈ W ∨ r ∈ VAR

DEFINITION 4.4 (Well-formed continuation).

c ∈ WC iff

k

FCont(e, E, c) (e, E) ∈ W ∧ c ∈ WC
ACont(a, c) (a ∈ W ∨ a ∈ VAR) ∧ c ∈ WC
ICont(e1, e2, E, c) (e1, E), (e2, E) ∈ W ∧ c ∈ WC

4.1 The Dumb algorithm
At this point, we have created almost all of the machinery we will
need to perform reductions and it is time to add the final touches
that give us the Dumb algorithm. But as we split off different pieces
of the transformation into different data structures, the P function
became increasingly monolithic. To clean up our implementation,
we introduce a series of syntax constructors which transform de-
layed values and DS syntax into CPS, optionally reducing the term

6 2016/3/11

in the process. For clarity, we name each constructor for the syntax
it produces.

For now, this means that the syntactic term produced will share
the name of the constructor that produced it e.g. theRet constructor
produces a ret form, the Call constructor produces a call form,
and so on. The type signatures for the constructors and the other
functions used by our algorithms can be found in Figure 11. In the
full Smart algorithm, constructors will also perform reductions, so
the syntax they generate will be the No-Brainer normal form of the
syntax for which they are named. Instead of the Ret constructor
generating a ret form, it will produce a term that is the No-
Brainer reduction of a naively generated ret form. The naming
of the smart constructors enhances the connections between the
unreduced CPS term and Smart-algorithm output. our algorithm as
we add more complicated operations. The following example of a
βcv redex demonstrates the difference between the Dumb algorithm
and Smart algorithm. Recall that extending the environment is
equivalent to an y for ãv substitution.

Dumb algorithm

(Calld 〈(fun y e), E〉 x k) = (call ˜〈(fun y e), E〉
v

x k)

Smart algorithm
(Call 〈(fun y e), E〉 x k) = (Cs e E[y 7→ x] k)

We call the constructors that perform reductions “smart-constructors”
With the use of constructors instead of the single P function, there
is only one artifact remaining from the original Fisher/Reynolds
algorithm algorithm: the name of the toplevel function. We address
this by renaming the toplevel function from P to C. The full Dumb
algorithm is defined in Figure 12.

Each function in the Dumb algorithm has an analog in the Smart
algorithm. To differentiate them, we use a subscript “d” and “s”.
We omit these subscripts when it is clear from context to which
algorithm we are referring. We also change our notation for blessvd
and blesscd in the Smart algorithm, notating the blessv and blessc
functions a{v|c}. These functions generate concrete syntax from
the representative data structure, so, after a value has been blessed,
we cannot perform further reductions on it. Therefore, we only
bless a value when we put it in its final resting place.

As our derivation shows, this algorithm is equivalent to the
Fisher/Reynolds algorithm. Therefore, we know that executing
its output with standard CPS semantics will simulate the origi-
nal direct style term. However, this algorithm contains all of the
administrative-redexes we promissed to address and is more com-
plicated than when we began. We present it to make the essential
concepts of our algorithm clear before we increase complexity in
the Smart algorithm.

4.2 The Smart algorithm
The Smart algorithm operates in two passes. The first pass identifies
the No-Brainer β-redexes in the source term and the second con-
verts the term into CPS. Our algorithm uses a count of a function’s
parameter’s occurrences in its body to efficiently tell if a function is
β-reducible. Counting these occurrences is performed by a simple
recursive pass over the source term. If a previous compiler pass has
already made all variable names unique, the counts can be tracked
in an external dictionary. If this step has not yet been performed,
it is likely easier to annotate variable-introduction sites with occur-
rence counts. Either storage method can be chosen, so long as the
nref function operates as expected.

Identifying η-reduction opportunities is more complex and sub-
tle. Our original, flawed method of identifying η-redexes examined
the structure of the DS term and checked the DS variable reference
counts. In the presence of our No-Brainer β-redexes, there are three

issues: DS terms with no η-redex can reduce to η-reducible terms,
variable counts can be duplicated by the βλ1 rule making the DS
counts inaccurate, and a term that η-reduce to a variable may now
be reducible by the βcv rule.

Our first issue is captured by the following DS term that is inel-
igible for η-reduction: (fun y1 ((fun y2 (y2 y1)) f)). But,
as the following reductions show, the other No-Brainer reductions
quickly transform its CPS equivalent into a No-Brainer reduction
opportunity.

(lam (x1 k1)

(call (lam (x2 k2) (call x2 x1 k2)) trivf k1))

→ (lam (x1 k1) (call trivf x1 k1))

−→
η
trivf

Though we could perform reductions analogous to the No-Brainer
CPS reductions on the source term, we can use our smart construc-
tors that we already know perform reductions to produce the NBNF
of the converted body Then, we perform a check on the converted
form. Regardless of the result of this check, we will use all or part
of the converted body in the blessed form. To avoid duplicating the
conversion, we let-bind the result to avoid converting the function
body twice.

Our second issue is that we may also change a variable’s oc-
currence counts when applying βcv reductions. Because we can-
not rely on variable reference counts from the DS term, we use
a new set of variable counts computed during the transforma-
tion of a term. This can be efficiently computed by adding a
second statement to the body of blessv . Whenever this function
is called on a variable, the count of references to that variable
in a global table is incremented. When a lam term of the form
(lam (x k) (call trivf x k)) is being considered for η-
reduction, nref (x, (lam (x k) (call trivf x k))) = 1. If
the term has the structure that suggests η-reduction, x must occur
in trivf . Our usage of fresh variable names allows us to use a sin-
gle global counts table instead of multiple local tables that require
a linear time merge operation.

The final issue we encounter with η-reduction is caused by its
interactions with β-reduction. In the following term, where xf is a
CPS variable and nref (x1, p) > 1, there is no βλ1 redex until after
η-reduction has been performed.

(call (lam (x1 k1) p)

(lam (x2 k2) (call xf x2 k2))

k3)

To solve the issue, in the above case, theCall constructor will bless
the argument lam before it blesses the term in function call posi-
tion. If the blessed argument is a variable, we extend the environ-
ment and proceed with β-reduction. If the argument is still a lam
term, we reify the term in call position and generate the call form.

With an understanding of how to identify β-redexes and per-
form η-redexes, we can proceed to describe the intuition for per-
forming our β-reductions. As we perform a substitution for every-
thing in the environment, when we need to β-reduction, we extend
the environment with a variable for argument mapping. This intu-
ition is formalized in Lemma 4.3.

We do not use the environment to β-reduction continuations.
This is because continuations do not occur in the source term, so we
are creating completely new syntax. Therefore, the environment,
which performs substitutions on the existing term, will not help
us. However, inlining a continuation just requires us to continue
passing the continuation deeper into the term until we unpack it and
perform reductions on its components. As our algorithm already
will use the environment to substitute variables and arguments into

7 2016/3/11

C e E c ,

(Retd c E[y]) e = y

(Retd c 〈e, E〉) e = (fun y e2)

(Cd e1 E FCont(e2, E, c)) e = (e1 e2)

(Cd e1 E ICont(e2, e3, E, c)) e = (if e1 e2 e3)

Ret c a , (ret c̃c ãv)

Call a1 a2 c , (call ã1
v ã2

v c̃c)

If a e1 e2 E c , (letc (j c̃c) (if ãv (Cd e1 E c) (Cd e2 E c)))

c̃c ,

halt c = halt

k c = k

(cont x (Cd e E ACont(x, c2))) c = FCont(e, E, c2)

(cont x (Call ãv x c̃2
c)) c = ACont(a, c2)

(cont x (If x e1 e2 E c2)) c = ICont(e1, e2, E, c2)

ãv ,

{
x a = x

(lam (x′ k) (Cd e E[x 7→ x′] k)) a = 〈(fun y e), E〉

Figure 12. The Dumb algorithm

continuation data structures while we reify them, so we will have
no problem performing these reductions.

The Smart algorithm, similarly to the dumb version, begins with
a call to the C function. This function uses the Ret constructor on
values and adds to the continuation data structure while reducing
the source term otherwise. In contrast to the Dumb algorithm, the
Rets constructor does one of several things depending on the type
of continuation it is passed. When the continuation is a variable,
no reductions can be preformed and so a ret form is generated.
If the continuation is an FCont , it converts the argument using
C, shifting the argument form into the continuation data structure
creating an ACont . When Ret is called on an ACont, the function
is stored in the continuation data structure and the argument is
provided to the Rets constructor.

At this point, the Call constructor is capable of generating
trivial values for all three parts of the function call using blessvs
and blesscs , but there may be an opportunity for β-reduction. If the
first argument of the Call is a static closure and the user function’s
parameter occurs once in its body, or if the argument it is passed is a
constant or a variable, i.e. if the call is an instance of a No-Brainer
β-reduction rule, we extend the environment of the static closure
with a binding for the user variable and convert the body using the
Cs constructor with the continuation argument from the Call. This
can lead to cascades of inlining as terms are repeatedly taken out
of the environment and then inlined again. If the argument to the
call is a static closure and the parameter to the static-closure in call
position occurs multiple times in its body, there is still a chance
that reductions can be made if the argument η-reduce to a variable.
In this case, we bless the argument first and let-bind it, extending
the environment if it is a variable and generating a call form
otherwise. If a reduction cannot be made, the unreducible term is let
bound and the environment is extended with the variable to which it
is bound. This completely removes lam expressions from function
call position. They are either let-bound or their parameter is inlined,
leaving only their body behind. The blesscs constructor works as
expected in the variable case, and uses the Ret form to perform

reductions otherwise. Similarly, the blessvs constructor uses the
Call form to reduce user functions.

4.3 Proofs of properties
For our algorithm to match our specification, we must prove two
key properties: that it preserves the semantics of the original term
and that its output is in no-brainer normal form.

Before we can prove that our algorithm’s output has these prop-
erties, we must prove that it terminates without producing an error.
As we have only one function, lookup, which may error, we need
to certify that all of uses of this function will succeed. This intuition
is given for environments in Definition 4.3 and for continuations in
Definition 4.4.

THEOREM 4.1 (Preservation of well-formedness).

∀(e, E) ∈ W, c ∈ WC

(PE e E c) preserves (e, E) ∈ W and c ∈ WC on all recursions

and

(Cd e E c) preserves (e, E) ∈ W and c ∈ WC on all recursions

and

(Cs e E c) preserves (e, E) ∈ W and c ∈ WC on all recursions

Proof Sketch: Induction on the structure of the term and mutual
induction on the various smart constructors.

The next two lemmas lead us to our theorem that the Smart
algorithm is a reduction of the Dumb algorithm. We do this using
two lemmas. Our first goal is to formalize the notion that when
we recur with an extended environment, we are β-reducing the
term. To prove this equivalence, we use substitution on unreified
continuations. We define this property in Figure 14 and prove
its equivalence to substitution on reified continuations in our first
lemma.

8 2016/3/11

C e E c ,

(Ret c E[y]) e = y

(Ret c 〈e, E〉) e = (fun y e2)

(Cs e1 E FCont(e2, E, c)) e = (e1 e2)

(Cs e1 E ICont(e2, e3, E, c)) e = (if e1 e2 e3)

Ret c a ,

(ret cc av) c = k ∨ c = halt

(Cs e E ACont(a, c)) c = FCont(e, E, c)

(Call a a2 c2) c = ACont(a2, c2)

(Ret ICont(e1, e2, c2, E) a) c = (If a2 e1 a2 E c2)

Call a1 a2 c ,

(call x a2
v cc) a1 = x

(Cs e E[y 7→ a2] c) a1 = 〈(fun y e), E〉 ∧ nref (y, e) = 1

let blessed = a1
v in

if blessed = x

then (Cs e E1[y1 7→ x] c) (* New βcv redex *)
else (call a1

v blessed cc)

a1 = 〈(fun y1 e1), E1〉 ∧ a2 = 〈(fun y2 e2), E2〉

(ret (cont x′ (Cs e E[y 7→ x′] c)) a2
v) a1 = 〈(fun y e), E〉

If a e1 e2 E c ,

{
(if av (Cs e1 E k) (Cs e2 E k)) c = k

(letc (j cc) (If e1 e2 E j)) otherwise

cc ,

halt c = halt

k c = k

(cont x (Ret c x)) otherwise

av ,

x a = x

let body = (Cs e E[y 7→ x] k) in
if nref (x, body) = 1 and body = (call triv x k)

then triv (* η reduction *)
else (lam (x k) body)

a = 〈(fun y e), E〉, x, k fresh

Figure 13. The Smart algorithm

DEFINITION 4.5 (Continuation Substitution).

halt[k 7→ c] , halt

k′[k 7→ c] ,

{
c k = k′

k′ k 6= k′

ACont(a, c′)[k 7→ c] , ACont(a, c′[k 7→ c])

FCont(e, E, c′)[k 7→ c] , FCont(e, E, c′[k 7→ c])

ICont(e1, e2, E, c
′)[k 7→ c] , ICont(e1, e2, E, c

′[k 7→ c′])

Figure 14. The substitution [k 7→ c] is extended to operate on the
elements of the Continuation domain, respecting their interpreta-
tion as concrete CPS terms.

LEMMA 4.2 (Continuation substitution is term substitution).

∀c ∈ WC, k, c′ ∈ WC, (e, E) ∈ W,

c̃c[k 7→ c̃′
c
] = ˜c[k 7→ c′]

c

∧
(Cd e E c)[k 7→ c̃′

c
] = (Cd e E c[k 7→ c′])

Proof Sketch: By mutual induction across blessv and C and
induction on the structure of the continuation and the structure
of the e term. The proof proceeds by induction through the k
and ACont(a, c) cases, but the FCont(e, E, c) case requires the
algorithm to step through Cd. To solve this issue, we add the
second half of this theorem which is proven by induction on the
structure of the term and continuation. This property allows us to
use our inductive hypothesis to move nested continuations out of
the data structure, reify them, and perform the outer substitution
before reversing the process to recreate the data structure post-
substitution.

Now that we have this continuation substitution property, we
can prove that β-reduction is equivalent to environment extension.

LEMMA 4.3 (Environment extension is β-reduction).

∀(e, E[y 7→ a]) ∈ W, c ∈ WC,

(Cd e E[y 7→ x] c)[x 7→ ãv]

= (Cd e E[y 7→ a] c)

where x and k are fresh

9 2016/3/11

Proof Sketch: By induction on the structure of the DS term with
additional cases for variables not equal to y as function parame-
ters and representing the entirety of e. We use the continuation
substitution property verified in Lemma 4.2 to substitute into the
continuation data structure. This lets us perform substitutions on
continuations by partially reifying them. First, we replace a con-
tinuation data structure with a continuation variable and a substitu-
tion. Then we will swap the inner and outer substitutions using the
fact that parallel λ-calculus substitutions compose. Finally, we sub-
stitute into the blessed continuation and then convert it back into a
data structure by running blessc backwards. This allows us to prop-
agate environment extensions into continuation data structures.

With these lemmas in hand, we can prove our initial theorem:
that the Smart algorithm is a No-Brainer reduction of the Dumb
algorithm.

THEOREM 4.4 (Dumb algorithm →∗ Smart algorithm). The out-
put of the Dumb algorithm algorithm reduces to the output of the
Smart algorithm:

∀(e, E) ∈ W, a ∈ W, c ∈ WC

(Cd e E c)→∗ (Cs e E c) and

(Retd c a)→∗ (Ret c a) and

(Calld a a c)→∗ (Call a a c) and

(Ifd a e e E c)→∗ (If a e e E c) and

ãv →∗ av and

c̃c →∗ cc

Proof Sketch: By double induction on the structure of the source
term and continuation data structure and mutual induction between
the various smart constructors. Lemma 4.3 is used to relate the two
algorithms through β-reduction.

As a consequence, we have a proof that the Smart algorithm nbr-
reduces to the Dumb algorithm. We also know that the Smart algo-
rithm is a reduction of the Fisher/Reynolds algorithm CPS trans-
form. This second fact tells us that there is a simulation between
DS evaluation and the evaluation of our algorithm’s output.

COROLLARY 4.5.

∀e,FV (e) = ∅ =⇒ (Cd e [·] halt)→∗ (Cs e [·] halt)

Though the output of our algorithm may be valid CPS, the
question of whether it is in No-Brainer normal form remains. A
proof of this property is provided in Theorem 4.6.

THEOREM 4.6 (The Smart algorithm output is an NBNF).

∀(e, E) ∈ W, a ∈ W, c ∈ WC

the following terms are in No-Brainer normal form

• (Cs e E c)
• (Ret c a)
• (Call a1 a2 c)
• (If a e1 e2 E c)
• av

• cc

Proof Sketch: As Lemma 4.3 formalizes the notion that environ-
ment extension is equivalent to β-reduction, proving that the we
generate a no-brainer normal form is simply a matter of verifying

that we extend the environment in the correct places. We also need
to consider the η-reduction case, which can be done by inspecting
blessv . Finally, we must ensure that we have reduced continuations
whenever possible. This requires us to examine the cases of Rets
which shows that we do indeed delegate to smart constructors that
perform these reductions where appropriate.

With slight modifications, Theorem 4.3 and Theorem 4.6 can be
combined by verifying that the reductions that transform the Dumb
algorithm into the Smart algorithm are the No-Brainer reductions
and that the Smart algorithm is in NBNF. We separate these results
into two theorems for clarity.

In this section we have presented a new algorithm for CPS con-
version. This algorithm in just two passes over the source tree, gen-
erates terms in No-Brainer normal form. We have unified the CPS
conversion and inlining portions of the compiler, leaving a strictly
smaller term which can undergo more complex static analyses. In
our next section, we present a series of simple variations which may
be used to extend this algorithm to do other optimizations during
the translation into CPS.

5. Variations
We’ve focussed the development of our algorithm, so far, on the
core λ-calculus: variables, λ-terms, applications and a primitive
conditional. But once the central ideas of the algorithm are under-
stood, multiple variations on the basic theme are possible.

5.1 Other reductions
We can easily extend the algorithm to handle other kinds of sim-
plifying, “no-brainer” local reductions at translation time. For ex-
ample, if we extend our source and CPS language to include literal
constants, we can do constant propagation with these. This more
or less comes for free by virtue of the fact that the algorithm is
built around the use of a symbol table. Just as when substituting
λ-terms, constant-propagating reductions can be disallowed when
the constant substituend is large (e.g., a list rather than an integer or
boolean) and the parameter being reduced away has multiple refer-
ences in the body of its binding λ-expression.

We can also do constant folding, when known primitive func-
tions are applied to constant arguments (perhaps by virtue of the
constant propagation described above—these simplifications cas-
cade). We can also fold away conditionals with known tests, e.g.,
reducing (if false e1 e2) to e2.

It’s probably wise not to jam too much complexity into a CPS-
converting front end; the point is to do, judiciously, the easy things
so that a normalising converter can clear away the “underbrush”1 in
a simple, linear-time way before proceeding to the more complex,
costly transformation phases of a compiler.

5.2 Multiple parameters and letc

In an implementation of our algorithm that is engineered for trans-
lating terms from a real programming language, we would likely
extend λ-terms to permit both multiple user parameters and multi-
ple continuation parameters. Even when translating languages such
as SML, OCaml or Haskell, where functions only take a single ar-
gument and return a single value, in the CPS intermediate represen-
tation we can usefully exploit multi-parameter functions and con-
tinuations to represent spreading values out in the register set across
calls and returns, or to describe callee-saves register-management
policies [1]. Likewise, multiple continuation parameters can be
used to encode both a main return point and an alternate exception-
handler exit, or to encode functions that can be called with multiple
return points [9, 8].

1 “Underbrush” being sort of the negative image of “low-hanging fruit.”

10 2016/3/11

This affects the algorithm in that we can now do β-reduction
on a piecemeal, per-parameter basis—something that is not possi-
ble when we encode a multi-parameter function by, e.g., currying
(fun (x y z) ...) into

(fun (x) (fun (y) (fun (z) ...))).

That is, if the first term occurs in a β redex, we can “reach into” the
middle of the parameter list and reduce away the y parameter, even
if the first x parameter cannot be reduced. Extending our algorithm
to work in this fashion is straightforward.

Once we admit multi-parameter λ-terms, we also get the ability
to have λ-terms that take no user parameters. This means we no
longer need the special (letc (k c) body) form to bind the
join points required for translating conditionals. Instead, we can
encode the binding with a redex that applies a λ term that binds
one continuation but no user parameters:

(call (lam (k) ; 1. Bind join cont k;
(if x (ret k 1) ; 2. do conditional,

(ret k 2) ; then jump to
(cont (y) ...)) ; 3. ...this join point.

This is more elegant; we elected not to do things this way in
our main development so that we could use a simpler language
where a λ term always binds exactly one user parameter and one
continuation parameter.

5.3 ANF
The basic ideas of the algorithm can easily be carried over to one
that translates direct-style terms to Felleisen and Sabry’s ANF [6].

5.4 Metacontinuations
If we Church-encode the elements of the Continuation set (that
is, values constructed by FCont , ACont , etc.), then we can get
an algorithm that uses the clever “metacontinuation” described byRight

cite? representation introduced by Danvy and Filinski [5]. In fact, we did
exactly this in the first version of our algorithm. We shifted to the
first-order/defunctionalised variant we have shown in this paper for
simplicity and clarity. In particular, it simplifies the inductive proof
to realise the continuations as elements of an inductive type, rather
than elements drawn from the space of functions.

Expressing the algorithm in a first-order language also means it
can more easily be directly translated to a non-functional language,
such as C, and also means that it can be directly expressed in
ACL2 [4] for purposes of verification (a task we are currently
undertaking).

References
[1] A. W. Appel. Compiling with continuations. Cambridge University

Press, 2006.
[2] A. W. Appel and T. Jim. Shrinking lambda expressions in linear time.

Journal of Functional Programming, 7(05):515–540, 1997.
[3] H. P. Barendregt. The lambda calculus, volume 3. North-Holland

Amsterdam, 1984.
[4] R. S. Boyer and J. S. Moore. A theorem prover for a computational

logic, 1990.
[5] O. Danvy and A. Filinski. Representing control: a study of the cps

transformation, 1992.
[6] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of

compiling with continuations. In ACM Sigplan Notices, volume 28,
pages 237–247. ACM, 1993.

[7] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theo-
retical computer science, 1(2):125–159, 1975.

[8] O. Shivers and D. Fisher. Multi-return function call. ACM SIGPLAN
Notices, 39(9):79–89, 2004.

[9] O. Shivers and D. Fisher. Multi-return function call. Journal of
Functional Programming, 16(4-5):547–582, 2006.

[10] G. L. Steele. Lambda: The ultimate declarative. Technical report, MIT
AI Lab, Cambridge, MA, USA, 1976.

11 2016/3/11

