
Functional Pearl: Do you see what I see?

???
???

Abstract
A static type system is a compromise between rejecting all bad pro-
grams and approving all good programs, where bad and good are
formalized in terms of a language’s untyped operational semantics.
Consequently, every useful type system rejects some well-behaved
programs and approves other programs that go wrong at runtime.
Improving the precision of a language’s type system is difficult for
everyone involved—designers, implementors, and users.

This pearl presents a simple, elaboration-based technique for
refining the analysis of an existing type system; that is, we approve
more good programs and reject more bad ones. The technique
may be implemented as a library and requires no annotations from
the programmer. A straightforward (yet immoral) extension of the
technique is shown to improve the performance of numeric and
vector operations.

1. The Spirit and Letter of the Law
Well-typed programs do go wrong. All the time, in fact:

Prelude> [0,1,2] !! 3
*** Exception: Prelude.!!: index too large
Prelude> 1 `div` 0
*** Exception: divide by zero
Prelude> import Text.Printf
Prelude Text.Printf> printf "%d"
*** Exception: printf: argument list ended prematurely

Of course, Milner’s catchphrase was about preventing type er-
rors. The above are all value errors that depend on properties not
expressed by Haskell’s standard list, integer, and string datatypes.
Even so, it is obvious to the programmer that the expressions will
go wrong and there have been many proposals for detecting these
and other value errors [1, 3, 6]. What stands between these propos-
als and their adoption is the complexity or annotation burden they
impose on language users.

Likewise, there are useful functions that many type systems can-
not express. Simple examples include a first function for tuples
of arbitrary size and a curry function for procedures that consume
such tuples. The standard work-around [5] is to write size-indexed
families of functions to handle the common cases, for instance:

Prelude> let curry_3 f = \ x y z -> f (x,y,z)

[Copyright notice will appear here once ’preprint’ option is removed.]

This pearl describes a technique for statically detecting value er-
rors and statically generalizing value-indexed functions. We catch
all the above-mentioned wrong programs and offer a single imple-
mentation of curry that obviates the need to copy/paste and manage
size-indexed versions. Furthermore, we demonstrate applications to
regular expression matching, vectorized operations, and querying a
database.

The key to our success–and also our weakness—is that we spe-
cialize procedure call sites based on compile-time constant values.
Run-time input foils the technique, but nonetheless we have found
the idea useful for many common programming tasks. Moreover,
the approach may be implemented as a library and used as a drop-in
fix for existing code. Simply importing the library overrides stan-
dard procedures with specialized ones. No further annotations are
necessary; if specialization fails we default to the program’s orig-
inal behavior. Put another way, our technique interprets the letter
of programs before the type system conducts its coarser, type-of-
values analysis. Like Shakespeare’s Portia, we understand that the
phrase “pound of flesh” says nothing about drawing blood and spe-
cialize accordingly.

Our implementation happens to be for Typed Racket, but Typed
Clojure, Haskell, OCaml, Rust, and Scala would have been equally
suitable hosts. The main requirement is that the language provides
a means of altering the syntax of a program before type checking.
Such tools are more formally known as macro or syntax extension
systems. At any rate, we sketch implementations for the five lan-
guages listed above in the conclusion.

Until that time when we must part, this pearl first describes
our general approach in Section 2 and then illustrates the approach
with specific examples in Section 3. We briefly report on practical
experiences with our library in Section 4. Adventurous readers may
enjoy learning about implementation details in Section ???, but
everyone else is invited to skip to the end and try implementing
a letter-of-values analysis in their language of choice.

Lineage Herman and Meunier demonstrated how Racket macros
can propagate information embedded in string values and syntax
patterns to a static analyzer [7]. Their illustrative examples were
format strings, regular expressions, and database queries. Relative
to their pioneering work, our contribution is adapting Herman &
Meunier’s transformations to a typed programming language. By
inserting type annotations and boolean guards, our transformations
indirectly cooperate with the type checker without significantly
changing the program’s syntax. We also give a modern description
of Racket’s macro system and handle definitions as well as in-line
constants.

Eager Evaluation Our implementation is available as a Racket
package. To install the library, download Racket and then run raco
pkg install ???. The source code is on Github at: https://
github.com/???/???. Suggestions for a new package name are
welcome.

1 2016/3/11

https://github.com/???/???
https://github.com/???/???

2. Interpretations and Translations
The out-of-bounds reference in [0,1,2] !! 3 is evident from the
definition of !! and the values passed to it. We also know that
1 `div` 0 will go wrong because division by zero is mathemati-
cally undefined. Similar reasoning about the meaning of "%d" and
the variables bound in \ x y z -> x can determine the correctness
of calls to printf and curry.

In general, our analysis begins with a class of predicates for ex-
tracting meta-information from expressions; for example the length
of a list value or arity of a procedure.

JinterpK :
!

expr Ñ Maybe(value)
)

Applying a function f P JinterpK to a syntactically well-formed
expression should either yield a value describing some aspect of
the input expression or return a failure result.1 Correct predicates
f should recognize expressions with some common structure (not
necessarily the expressions’ type) and apply a uniform algorithm
to computer their result. The reason for specifying JinterpK over
expressions rather than values will be made clear in Section 3.

Once we have predicates for extracting data from the syntax of
expressions, we can use the data to guide program transformations.
The main result of this pearl is defining a compelling set of such
transformations.

JtransformK : !

expr Ñ expr
)

Each g P JtransformK is a partial function such that pg eq returns
either a specialized expression e1 or fails due to a value error. These
transformations should be applied to expressions e before type-
checking; the critera for correct transformations can then be given
in terms of the language’s typing judgment $ e : τ and untyped
evaluation relation teu ó v, where teu is the untyped erasure of e.
We also assume a subtyping relation ă: on types.

• If $ e : τ and $ e1 : τ 1 then τ 1ă: τ and both teu ó v and
te1u ó v.

• If ⊬ e : τ but $ e1 : τ 1 then teu ó v and te1u ó v.
• If $ e : τ but e1 “ K or ⊬ e1 : τ 1 then teu ó wrong or diverges.

If neither e nor e1 type checks, then we have no guarantees about
the run-time behavior of either term. The hope is that both diverge,
but proving this fact in a realistic language is more trouble than it
is worth.

Finally, we say that a translation pg eq “ e1 is moral if teu is α-
equivalent to te1u. Otherwise, the tranlation has altered more than
just type annotations and is immoral. All our examples in Section 1
can be implemented as moral translations. Immoral translations are
harder to show correct, but also much more useful.

3. Real-World Metaprogramming
We have defined useful letter-of-values transformations for a va-
riety of common programming tasks ranging from type-safe string
formatting to constant-folding of arithmetic. These transformations
are implemented in Typed Racket [8], which inherits Racket’s pow-
erful macro system [4].

‚ ‚ ‚ ‚

read

expand

typecheck compile

Figure 1: Typed Racket language model

Our exposition does not assume any knowledge of Racket or
Typed Racket, but a key design choice of the Typed Racket lan-
guage model bears mentioning: evaluation of a Typed Racket pro-
gram happens across three distinct stages, shown in Figure 1. First

1 The name interp is a mnemonic for interpret or interpolant [2].
the program is read and macro-expanded; as expanding a macro in-
troduces new code, the result is recursively read and expanded un-
til no macros remain. Next, the fully-expanded Typed Racket pro-
gram is type checked. If checking succeeds, types are erased and
the program is handed to the Racket compiler. For us, this means
that we can implement JtransformK functions as macros referenc-
ing JinterpK functions and rely on the macro expander to invoke
our transformations before the type checker runs.

Though we describe each of the following transformations us-
ing in-line constant values, our implementation applies JinterpK
functions to every definition and let-binding in the program and
then associates compile-time data with the bound identifier. When
a defined value flows into a function like printf without being mu-
tated along the way, we retrieve this cached information. The macro
system features used to implement this behavior are described in
Section ???.

References
[1] Lennart Augustsson. Cayenne — a language with dependent types.

In Proc. ACM International Conference on Functional Programming,
pp. 239–250, 1998.

[2] William Craig. Three Uses of the Herbrand-Gentzen theorem in relat-
ing model theory and proof theory. Journal of Symbolic Logic 22(3),
pp. 269–285, 1957.

[3] W. Dietl, S. Dietzel, M. D. Ernst, K. Muslu, and T. W. Schiller.
Building and Using Pluggable Type Checkers. In Proc. International
Conference on Software Engineering, 2011.

[4] Matthew Flatt and PLT. Reference: Racket. PLT Inc., PLT-TR-2010-
1, 2010. http://racket-lang.org/tr1/

[5] Daniel Friedlander and Mia Indrika. Do we need dependent types?
Journal Functional Programming 10(4), pp. 409–415, 2000.

[6] Sam Lindley and Conor McBride. Hasochism: The Pleasure and Pain
of Dependently Typed Programming. In Proc. ACM SIGPLAN No-
tices, pp. 81–92, 2014.

[7] David Herman and Philippe Meunier. Improving the Static Analysis
of Embedded Languages via Partial Evaluation. In Proc. ACM Inter-
national Conference on Functional Programming, 2004.

[8] Sam Tobin-Hochstadt and Matthias Felleisen. The Design and Imple-
mentation of Typed Scheme. In Proc. ACM Symposium on Principles
of Programming Languages, pp. 395–406, 2008.

2 2016/3/11

http://racket-lang.org/tr1/

	1 The Spirit and Letter of the Law
	2 Interpretations and Translations
	3 Real-World Metaprogramming
	3.1 Regexp
	3.2 Database
	3.3

	4 Experience
	References

