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Abstract. Inline function expansion is an optimization that may im-

prove program performance by removing calling sequences and enlarging

the scope of other optimizations. Unfortunately it also has the drawback

of enlarging programs. This might impair executable programs perfor-

mance. In order to get rid of this annoying e�ect, we present, an easy

to implement, inlining optimization that minimizes code size growth by

combining a compile-time algorithm deciding when expansion should oc-

cur with di�erent expansion frameworks describing how they should be

performed. We present the experimental measures that have driven the

design of inline function expansion. We conclude with measurements

showing that our optimization succeeds in producing faster codes while

avoiding code size increase.

Keywords: Compilation, Optimization, Inlining, Functional languages.

1 Introduction

Inline function expansion (henceforth \inlining") replaces a function invocation

with a modi�ed copy of the function body. Studies of compilation of functional

or object-oriented languages show that inlining is one of the most valuable opti-

mizations [1, 4]. Inlining can reduce execution time by removing calling sequences

and by increasing the e�ectiveness of further optimizations:

� Function call sequences are expensive because they require many operations

(context save/restore (i.e. memory fetches) and jumps). For small functions,

the call sequence can be more expensive than the function body.

� Inlining can improve the e�ectiveness of the other compiler optimizations

because inlined function bodies are modi�ed copies. The formal function

parameters are replaced with (or bound to) the actual parameters. Known

properties of the actual parameters can then be used to optimize the dupli-

cated function body. For instance, inlining helps the compilation of polymor-

phic functions because modi�ed versions may become monomorphic. Finally,

inlining helps the optimization of both the called and the calling function.

Information about actual parameters can be used to improve the compila-

tion of an inlined function body; information about the result of an inlined

function can be used to improve the calling function.



As inlining duplicates function bodies, it has an obvious drawback: it in-

creases the size of the program to be compiled and possibly the size of the

produced object �le. In this case, compilation becomes more time consuming

(because after inlining the compiler must compile larger abstract syntax trees)

and, in the worst case, execution can become slower. On modern architectures,

best performance is obtained when a program �ts into both the instruction and

data caches. Clearly, smaller executables are more likely to �t into the instruction

cache.

To prevent code explosion, inlining expansion cannot be applied to all func-

tion calls. The most di�cult part of the inlining optimization is the design of a

realistic inlining decision algorithm. This paper focuses on this issue. It presents

a compile-time algorithm which allows �ne control of code growth and does not

require pro�ling information or user annotations.

Functional languages are characterized by extensive use of functions and

particularly recursive functions. Both types of functions can be inlined within

a unique framework but a re�ned expansion can be achieved for recursive func-

tions. This paper presents an e�cient framework for inlining recursive functions.

Experimental measurements show this framework to be one of the keys to con-

trolling code size growth. This is done by a combination of an inlining deci-

sion algorithm (deciding when to perform the expansions) and ad-hoc expansion

frameworks (describing how to perform the expansions).

Inlining may impair code production because of los of high level informa-

tions. For instance, Cooper et al. report in [5] that inlining discards aliasing

informations in Fortran programs, so that compilers are unable to avoid inter-

lock during executions. Davison and Holler show in [6] that inlining for C may

increase register save and restore operations because of C compilers artifacts.

On our part, we have never noticed decreases of performance when activating

inlining optimization.

This paper is organized as follows: section 2 presents a study of previous

algorithms and schemes. Section 3 presents our new algorithm.Section 4 presents

the di�erent inlining frameworks. Section 5 reports on the impact of the inlining

expansion optimization in Bigloo, our Scheme compiler.

2 Inline expansion: when

2.1 Previous approaches

This section contains a presentation of the main inlining decision rules and al-

gorithms previously published. The remarks made in this section are the basis

for the design of the algorithm presented in section 3.

User inlining indications Some systems (e.g. gcc) or language de�nitions (e.g.

C++) allow programs to contain inlining annotations.

Rule 1 (inlining annotation) Let d be the de�nition of a function f ; a call

to f is inlined if d has an \inline" annotation.



Inlining annotations are useful to implement some parts of the source lan-

guage (for instance, in Bigloo [12], our Scheme & ML compiler, inlining annota-

tions are used intensively in the libraries for accessing and mutating primitives

like car, cdr, vector-ref or vector-set!) but cannot replace automatic inlin-

ing decisions. By contrast an automatic inlining decision algorithm can choose

to inline a function at a call site, but also not to do it at another call site. User

inlining annotations are attached to function de�nitions and, as a consequence,

are not call site dependent. As a result, misplaced inlining annotations can lead

to code size explosion. Furthermore, inlining annotations require the program-

mer to have a fair understanding of the compiler strategy in order to be able to

place annotations judiciously.

Size-based criteria Simpler inlining decision algorithms [14, 4] are based on

the body size of called functions:

Rule 2 (body-size) Let K be a constant threshold, f a function, s the body

size of f ; a call to f is inlined if s is less than K.

Rule 2 succeeds in limiting the code size growth without recursive function

de�nitions because any function call of a program cannot be replaced by an

expression bigger than K. Hence, inlining expansion of a program containing c

calls can increase the code size by at most c � K. In order to prevent in�nite

loops when inlining recursive functions, rule 2 has to be extended:

Rule 3 (body-size & nested-call) Let f be a function, k a call to f ; k is

inlined if f satis�es rule 2 and if k is not included in the body of f .

This rule helps preventing code explosion and is fairly easy to implement,

but it is very restrictive. It may prevent inlining of functions which could have

been inlined without code growth. For example, let's study the following Scheme

de�nition:

(define (plus x

1

x

2

x

3

... x

n

) (+ x

1

x

2

x

3

... x

n

))

Let n be larger than the constant threshold K. Therefore, this plus function

cannot be inlined because it is said to be too large (its body size is greater than

K). However, inlining calls to plus does not increase the compiled code size

because the body size of plus is not greater than any call to plus. From this

remark, Appel presents in [1] an improvement of Rule 3:

Rule 4 (body-size vs call-size) If the body of a function f is smaller than the

overhead required for a function call, then f may be inlined without increasing

the program size.



Savings estimates The inlining of a call to a function f replaces the formal

parameters by the actual parameters and some of them may have special proper-

ties (constants, for instance). Other optimizations such as constant folding may

be able to shrink the modi�ed version of the body of f . Since Rule 4 neglects

this, we de�ne:

Rule 5 (saving estimations) If the body of f , after inlining, will shrink by

further optimizations to become smaller than the overhead required for a function

call, then the call to f may be inlined.

Two implementations of this approach have been described. The �rst one, due

to Appel [1], estimates the savings of the other optimizations without applying

them. The second, due to Dean and Chambers [7], uses an inline-trial scheme:

rather than just estimating the savings of other optimizations, these are applied

and the savings are measured by inspecting the result of the compilation. To

limit the number of required compilations, each inlining decision is stored in a

persistent database. Before launching a full compilation of a call site function,

the inlining decision algorithm scans its database to �nd a similar call (a call to

the same function with the same kind of parameters). Rule 5 has, however, two

important drawbacks:

� The two techniques estimate the impact of the other optimizations on the

body of a called function f in the context of a speci�c call site included in

a function g. Neither computes the savings of applying the other compiler

optimizations on the body of g, due to the added expense. However, after

inlining, additional information may be known about a function result. For

instance, in the following Scheme program:

1: (define (inc i x) 6: ...

2: (if (fixnum? i) 7: (let ((y (inc 1 x)))

3: (fixnum+ i x) 8: (if (fixnum? y)

4: (flonum+ i x))) 9: ...)))

5: (define (foo x)

Inlining the call to inc in foo (line 7) allows better compilation of the body

of inc because, since i is bound to the �xnum constant 1, the test (fixnum?

i) (line 2) can be removed. After inlining and test reduction, it appears that

y can only be bound to a �xnum. This information can be used to improve

the compilation of foo (by removing, for instance, the line 8 test).

� The saving estimations can only be computed for local optimizations. Global

optimizations (such as inter-procedural register allocations or control ow

analysis) require compilation of the whole program and their results are

mostly unpredictable. Because these optimizations are often slow, it is, in

practice, impossible to apply them each time a function could be inlined.

Because saving estimations are computed on an overly restricted set of op-

timizations, we think rule 5 is not highly e�cient. It fails to measure the real

impact of inlining in further optimizations.



Pro�le-based decision Some inlining decision algorithms use pro�le informa-

tion. Programs are run with various sets of input data and statistics are gathered.

Inlining decisions are taken based on these statistics. Two papers present such

works [11, 8]. They are based on the same rule that can be merged with rule 2

to prevent excessive code growth:

Rule 6 (pro�ling statistics) When pro�ling statistics show that the execution

time of an invocation of a function f is longer than the execution time of the

evaluation of the body of f , f could be inlined.

We do not think pro�le-based decision algorithms are practical because they

require too much help from the programmer. A judicious set of executions must

be designed and many compilations are needed.

3 The inlining decision algorithm

From the remarks of Section 2.1, we have designed our own inlining decision

algorithm.

3.1 The input language

The input language of our algorithm is very simple. It can be seen as a small

Scheme [9] language with no higher order functions. It is described in the gram-

mar below:

Syntactic categories

v 2 VarId (Variables identi�er)

f 2 FunId (Functions identi�er)

� 2 Exp (Expressions)

k 2 Cnst (Constant values)

� 2 Prgm (Program)

� 2 Def (De�nition)

Concrete syntax

� ::= � . . . � �

� ::= (define (f v : : : v) �)

� ::= k

j v

j (let ((v �) : : :) �)

j (set! v �)

j (labels ((f (v : : : v) �) : : :) �)

j (if � � �)

j (begin � : : : �)

j (f � : : : �)

j (+ � �)

A program is composed of several global function de�nitions and of one expres-

sion used to initiate computations. Local recursive functions are introduced by

the labels special form. Other constructions are regular Scheme constructions.

3.2 Principle of the algorithm

Our algorithmuses static information. The decision to expand a call site depends

on the size of the called function, the size of the call (i.e. the number of actual

parameters) and the place where the call is located. Our decision algorithm does

not require user annotation or pro�ling statistics. Inspired by [1, page 92] the



idea of the algorithm is to allow code growth by a certain factor for each call

site of the program. When a call is inlined, the algorithm is recursively invoked

on the body result of the substitution. The deeper the recursion becomes, the

smaller the factor is.

We illustrate the algorithm's behavior on the following example:

1: (define (inc-fx x) (+ x 1)) 6: (inc-fx x)

2: (define (inc-fl x) 7: (inc-fl x)))

3: (inc-fx (inexact->exact x))) 8: (define (foo x) (inc x))

4: (define (inc x) 9: (foo 4)

5: (if (fixnum? x)

Suppose that at recursion depth zero we permit call sites to become 4 times

larger and we make each recursive call to the inlining algorithm divide this

multiplicative factor by 2 (later on, we will study the impact of the choice of

the regression function). The line 8 call to inc has a size of 2 (1 for the called

function plus 1 for the formal argument). The body size of inc is 7 (1 for the

conditional, 2 for the test and 2 for each branch of the conditional). Hence, the

call is expanded. Before expanding the body of inc in line 8, the inlining process

is launched on the body of the function with a new multiplicative factor of 2 (half

the initial factor of 4). The inlining process reaches line 6, the call to inc-fx.

The size of the body of this function is 3 (1 for the + operator call and 1 for each

actual argument), the call size is 2 hence this call is expanded. No further inlining

can be performed on the body of inc-fx because + is a primitive operator. The

inlining process then reaches the call of line 7. The call to inc-fl is inlined, the

multiplicative factor is set to 1 and the inner call to inc-fx (line 3) is reached.

This call cannot be expanded because the amount of code growth is less than

the body of inc-fx. After the inlining process completes, the resulting code is:

1: (define (inc-fx x) (+ x 1)) 4: (+ x 1)

2: (define (foo x) 5: (inc-fx (inexact->exact x))))

3: (if (fixnum? x) 6: (foo 4)

Dead functions have been removed (inc and inc-fl) and, as one can notice,

the total size of the program is now smaller after inline expansion. Experimental

results (see section 5) show that this phenomenon is frequent: in many situations,

our inline expansion reduces the resulting code size.

3.3 The algorithm

The main part of the algorithm is a graph traversal of the abstract syntax tree.

All function de�nitions are scanned in a random order (the scanning order has

no impact on the result of the optimization). The inlining process, I

ast

(algo-

rithm 3.1), takes three arguments: a multiplicative factor (k), a set of functions

(S) and an abstract syntax tree (�). It returns new abstract syntax trees.

Function calls satisfying the I

app?

predicate are inlined using the I

app

func-

tion (algorithm 3.2). As one can notice, the inlining decision is context depen-

dent. A given function can be inlined on one call site and left unexpanded on

another site. A function call is inlined if its code size growth factor is strictly



K: an external user parameter

I( � )=

8f2�#

definitions

f#

body

 I

ast

( K, ;, f#

body

)

I
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[[ k ]]:
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[[ v ]]:
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[[ (let ((v

0

�

0

) : : :) �) ]]:

let �

0
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( k, S, �

0
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[[ (let ((v

0

�

0

0

) : : :) I

ast

( k, S, � )) ]]

[[ (set! v �) ]]:

[[ (set! v I

ast

( k, S, � )) ]]

.

.

.

[[ (f a

0

: : :) ]]:

let a

0

0

=I

ast

( k, S, a

0

), . . .

I

app

( k, S, f, a

0

0

, : : : )

end

Algorithm 3.1: The abstract syntax tree walk

smaller than the value of k. This criteria is strong enough to avoid in�nite recur-

sions. This current version of I

app?

does not make use of the S argument. Later

versions (Section 4.2) will. The expansion of a call to a function f is computed by

I

let

(algorithm 3.2). It replaces the call by a new version of the body of f . This

new version is a copy of the original body, �-converted and recursively inlined.

To recursively enter the inlining process, a new factor is computed. Section 5.1

will study the impact of the Dec function on the inlining process.

I

app

( k, S, f, �

0

, : : :, �

n

)=

if I

app?

( k, S, f, n + 1 )

then I

let

( k, S, f, �

0

, : : :, �

n

)

else [[ (f �

0

: : : �

n

) ]]

I

app?

( k, S, f, csize )=

function-size( f#

body

) < k � csize

I

let

( k, S, f, �

0

, : : : )=

let x

0

=f#

formals

0

, . . .

[[ (let ((x

0

�

0

) ...) I

ast

( Dec( k ), ffg

S

S, f#

body

)) ]]

Algorithm 3.2: The let-inline expansion



3.4 Inlining in presence of higher-order functions

Inlining a function call requires knowing which function is called in order to

access its body. In the presence of higher-order functions, the compiler sometimes

does not know which function is invoked. The algorithm presented above can be

extended to accept higher-order functions by adding the straightforward rule

that calls to unknown functions are not candidates to expansion. In order to

enlarge the set of the possibly inlined function calls of higher order languages,

Jagannathan and Wright have proposed in [10] to apply a control ow analysis

before computing the inline expansion. For each call site of a program, the control

ow analysis is used to determine the set of possibly invoked functions. When

this set is reduced to one element the called function can be inlined. This work

is complementary to the work presented here. Jagannathan and Wright enlarge

the set of inlining candidates, while we propose an algorithm to select which

calls to inline from this set.

4 Inline expansion: how

Section 2 described the algorithm to decide when a function call should be in-

lined. In this section we show how a functional call should be inlined. Functions

are divided into two classes: non-recursive and recursive ones.

4.1 Inlining of non-recursive functions (let-inlining)

The inlining of a call to a non-recursive function has been shown in algorithm 3.2.

Non-recursive function inlining is a simple �-reduction: it binds formal parame-

ters to actual parameters and copies the body of the called function.

4.2 Inlining of recursive functions (labels-inlining)

Self-recursive functions can be inlined using the transformation I

let

but a more

valuable transformation can be applied: rather than unfolding recursive calls to

a certain depth, local recursive de�nitions are created for the inlined function

(following the scheme presented in [13]). When inlining a recursive function f ,

I

labels

(algorithm 4.1) creates a local de�nition and replaces the original target

of the call with a call to the newly created one. It is more valuable to introduce

local functions than unrolling some function calls because the constant propa-

gation and other local optimizations are no longer limited to the depth of the

unrolling; they are applied to the whole body of the inlined function. The previ-

ous de�nitions of functions I

app

and I

app?

have to be modi�ed. Recursive calls

should not be further unfolded. This is avoided by making use of the S argument

in the I

app?

function.

We show the bene�t of the I

labels

on the following Scheme example:

(define (map f l) (if (null? l) '() (cons (f (car l)) (map f (cdr l)))))

(define (succ x) (+ x 1))

(define (map-succ l) (map succ l))



I
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( k, S, f, csize )=

if f2S
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else function-size( f#
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I
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( k, S, f, �

0

, : : :, �

n

)=

let �
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=I

ast

( Dec( k ), ffg

S

S, f#
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0

=f#
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0
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[[ (labels ((f (x

0

: : :) �

0

)) (f �

0
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n

)) ]]

Algorithm 4.1: The labels-inline expansion

When inlining map into map-succ, the compiler detects that map is self-recursive,

so it inlines it using a local de�nition:

(define (map-succ l)

(labels ((map (f l)

(if (null? l) '() (cons (f (car l)) (map f (cdr l))))))

(map succ l)))

A further pass of the compiler states that the formal parameter f is a loop

invariant, so f is replaced with its actual value succ. Then, succ is open-coded

and we �nally get the equivalent de�nition:

(define (map-succ l)

(labels ((map (l)

(if (null? l) '() (cons (+ 1 (car l)) (map (cdr l))))))

(map l)))

Thanks to the labels-inline expansion and to constant propagation, closure

allocations are avoided and computed calls are turned into direct calls. The whole

transformation speeds up the resulting code and it may reduce the resulting code

size because the code for allocating closures is no longer needed.

4.3 Inlining as loop unrolling (unroll-inlining)

We have experimented an ad-hoc inlining scheme for loops. Here we consider a

loop to be any recursive function with one single inner recursive call. When a

loop is to be inlined, a local recursive function is created (according to the I

labels

transformation) followed by a traditional unrolling. This new expansion scheme

requires the slight modi�cations to I

app

and I

app?

given in algorithm 4.2. The

unrolling is actually a simple mix between the previous inlining frameworks. The

transformation I

labels

is applied once, followed by as many I

let

transformations



as the multiplicative factor k allows. We illustrate the unroll-inline transforma-

tion on the preceding map-succ example:

1: (define (map-succ l) 6: (if (null? l

2

) '()

2: (labels ((map (l

1

) 7: (cons (+ 1 (car l

2

))

3: (if (null? l

1

) '() 8: (map (cdr l

2

))

4: (cons (+ 1 (car l

1

)) 9: )))))))

5: (let ((l

2

(cdr l

1

))) 10: (map l)))

I

app

( k, S, f, �

0

, : : :, �

n

)=

if I

app?

( k, S, f, n + 1 )

then if f is a self recursive function ? and f 62S

then I

labels

( k, S, f, �

0

, : : :, �

n

)

else I

let

( k, S, f, �

0

, : : :, �

n

)

else [[ (f �

0

: : : �

n

) ]]

I

app?

( k, S, f, csize )=

function-size( f#

body

) < k � csize

Algorithm 4.2: The unroll-inline expansion

4.4 Related work

Little attention has been formerly given to how the expansion should be per-

formed. Previous works have considered it as a straightforward �-reduction.

Inlining of recursive functions has been mainly addressed into three previous

papers:

� In the paper [3] H. Baker focuses on giving a semantics to the inlining of

recursive functions. Inlining of recursive functions is thought as a loop un-

rolling by unfolding calls until a user determined depth level. The paper

neither studies the impact of this inlining framework on run time perfor-

mance nor attempts to present optimized transformations. We even think

that the proposed transformations would probably slow down executions

(because they introduce higher order functions which are di�cult to imple-

ment e�ciently).

� We have made a previous presentation of the labels-inline transformation

in [13]. It does not focus on the inlining optimization and it merely presents

the transformation without studying its impact.

� The labels-inline transformation has been used by A. Appel in [2]. His ap-

proach di�ers a little bit from our because Appel introduces header around

every loop independently of the inlining optimization. We think this has two

drawbacks. First, un-inlined loops have to be cleaned up (that is, headers

have to be removed) otherwise there is an extra call overhead. More impor-

tantly, introducing header make functions abstract syntax tree bigger. Since



the inlining algorithm uses functions size to decide to inline a call, loops with

header introduced are less likely to be inlined.

5 Experimental results

For experimental purp-

oses, we used ten dif-

ferent Scheme programs,

written by di�erent au-

thors, using various pro-

gramming styles. Exper-

iments have been con-

ducted on a DEC AL-

PHA 3000/400, running

DEC OSF/1 V4.0 with 64

Megabytes of memory.

programs nb lines author description

Bague 104 P. Weis Baguenodier game.

Queens 132 L. Augustsson Queens resolution.

Confo 596 M. Feeley Lattice management.

Boyer 640 R. Gabriel Boyer completion.

Peval 643 M. Feeley Partial evaluator.

Earley 672 M. Feeley Earley parser.

Matrix 753 Matrix computation.

Pp 757 M. Serrano Lisp pretty-printer.

Maze 879 O. Shivers Maze game escape.

Nucleic 3547 M. Feeley Molecular placement.

In order to be as architecture-independent as possible, we have measured du-

ration in both user plus system cpu time and number of cpu cycles (using the

pixie tool). For all our measures, even when the multiplicative factor is set to

0, primitive operators (such as + or car) are still inlined.

5.1 Selecting the Dec regression function

We have studied the impact of the Dec function, �rst used in algorithm 3.2.

We have experimented with three kind of regression functions: decrementa-

tions: �

�N

=(� (k) (- k N )), divisions: �

=N

=(� (k) (/ k N )) and two step

functions: �

=0

=(� (k) 0) and �

=k

init

=N

=(� (k) (if (= k k

init

) (/ k N ) 0)).

For each of these functions, we have measured the code size growth and

the speed improvement. Since measurement showed that varying N has a small

impact, we just present measurements where N has been set to two.

We present results for only three programs, Queens, Peval and Conform

because they are representative of the whole 10 programs. The X axis represents

the initial value of the k multiplicative factor. The Y axis of the upper graph-

ics represents the normalized object �le size. The Y axis of the lower graphics

represents the normalized durations (cpu cycles).

Queens, object file size growth
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Peval, object file size growth
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Ratio

Kfactor
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
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0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.04

0.00 5.00 10.00 15.00



Queens, speed improvement (nb cycles)

0
(/ kinit 2)
(- k 2)
(/ k 2)

Ratio

Kfactor
0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

0.00 5.00 10.00 15.00

Peval, speed improvement (nb cycles)

0
(/ kinit 2)
(- k 2)
(/ k 2)

Ratio

Kfactor0.90
0.91
0.91
0.92
0.92
0.93
0.93
0.94
0.94
0.95
0.95
0.96
0.96
0.97
0.97
0.98
0.98
0.99
0.99
1.00
1.00

0.00 5.00 10.00 15.00

Conform, speed improvement (nb cycles)

0
(/ kinit 2)
(- k 2)
(/ k 2)

Ratio

Kfactor

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.00 5.00 10.00 15.00

Two remarks can be made on these measurements:

� The regression function �

=0

produces less e�cient executables (see for in-

stance Conform) than others regression functions. This proves that a recur-

sive inlining algorithm (an algorithm trying to inline the result of an inlined

call) gives better results that a non recursive one.

� �

=k

init

=N

, �

�N

and �

=N

lead to about the same results. This demonstrates

that only the very �rst recursive steps of the inlining are important. Func-

tions like �

�N

or �

=N

have the drawback to authorize large code size ex-

pansion (about 2

1

N

�log

2

k

2

in the worst case for �

=N

). Step functions like

�

=k

init

=N

are much more restrictive (k

2

=N in the worst case). Choosing

step functions leads to small and e�cient compiled programs.

5.2 The general measurements

The second step of our experiment has been to study the impact of the let-inline,

labels-inline and unroll-inline expansions. The results summarized in Figure 1

show the speedups and the code size increases for the 10 programs in each of the

3 frameworks. For each of them we have computed a speedup, measured as the

ratio of the speed of the inlined divided by the speed of the same program with

inlining disabled, and a size, measured as the ratio of the size of the inlined pro-

gram divided by the size of the original program. The experiment was performed

for all values ofN (see Section 5.1 for the de�nition ofN ) between 1 and 15. The

Figure shows the results of the best speedup for each program and framework.

Furthermore, we computed speedups and size increases with respect to number

of cycles and actual time elapsed. Thus, in Figure 1, cycle/speed refer to the

ratio of cycles and cycle/size refers to the ratio of sizes, while sys+cpu/speed

refers to the ratio of times and sys+cpu/size refers to the ratio of size. Note that

for a given program and framework, the value of N giving the best speedup

is sometimes di�erent if we measure it in cycles or elapsed time, thus the size

increases may also di�er.

Labels-inlining Labels-inlining is an important issue in order to minimize ob-

ject �le size. In the worst case, labels-inlining behaves as let-inlining, enlarging

object �le size, but in general, it succeeds in limiting or even avoiding expansions.

This good behavior does not impact on speedup ratios.



Best speedup for N 2[1::15]

Programs let labels unroll

cycle sys+cpu cycle sys+cpu cycle sys+cpu

speed size speed size speed size speed size speed size speed size

bague 0.67 1.18 0.66 1.18 0.69 1.18 0.66 1.18 0.69 1.18 0.66 1.18

queens 0.86 1.53 0.89 1.53 0.82 0.92 0.85 0.92 0.81 0.92 0.89 0.92

conform 0.72 1.21 0.83 1.17 0.72 0.96 0.76 0.96 0.72 0.98 0.76 0.98

boyer 0.89 1.00 1.00 1.00 0.89 0.90 0.89 0.90 0.89 0.90 0.89 0.90

peval 0.98 1.05 1.00 1.00 0.90 1.05 0.90 1.00 0.96 1.13 0.94 1.03

earley 0.95 1.00 0.97 1.00 0.95 1.00 0.97 1.00 0.95 1.00 0.97 1.00

matrix 0.93 1.11 0.88 1.11 0.94 0.88 0.92 0.91 0.94 0.94 0.90 0.94

pp 0.94 1.22 0.90 1.11 0.95 1.10 0.92 1.07 0.95 1.14 0.92 1.09

maze 0.71 0.84 0.73 0.84 0.70 0.80 0.73 0.84 0.71 0.80 0.73 0.80

nucleic 0.99 1.15 0.95 1.15 0.98 1.15 0.98 1.10 0.98 1.15 1.00 1.00

Average 0.86 1.13 0.88 1.11 0.85 0.99 0.86 0.99 0.86 1.01 0.87 0.98

Fig. 1. Best speedups

Except for a very few programs, let-inlining does not succeed in producing

faster (less cpu cycle consuming) executables than labels-inlining but it enlarges

too much the object �le size. For instance, the let-inlining aborts on Earley and

Matrix for very high initial values of the multiplicative factor k because the

abstract syntax trees of these programs become excessively large.

Unroll-inlining Few improvements come from unroll-inlining.OnlyBoyer and

Maze are improved when this framework is used. One explanation for this result

is that unroll-inlining is barely applied because most loops have only one argu-

ment (after removal of invariant parameters) and thus they can then be inlined

only if their body is very small.

This is a slightly disappointing result but even the bene�ts of classical loop

unrolling optimizations are not well established. For instance, experience with

gcc in [14] is that \[general loop unrolling] usually makes programs run more

slowly". On modern architectures performing dynamic instruction scheduling,

loop unrolling that increases the number of tests can severely slow down exe-

cution. This was partially shown by the measures of the labels-inlining impact

that showed that it is more valuable to specialize a loop rather than to unfold

outer loop calls.

5.3 Related work

The inlining impact depends on the cost of function calls and thus is highly

architecture-dependent. Hence, comparison with previous measures reported on

inlining speedup, made on di�erent architectures, is di�cult. Furthermore, we

think that it does not make sense to compare the inlining impact for very di�erent



languages. For instance, since a typical C program does not make extensive use

of small functions such as a Scheme and ML program, an inlining optimizer for

C should probably not adopt a framework tuned for a functional language. We

limit the present comparison to a few publications.

� C. Chambers shows that inlining reduces the object �le size produced by the

Self compiler [4] by a very large factor (in the best case, inlining reduces the

object �le size from a factor of 4) while making programs run much faster

(between 4 to 55 times faster). The explanation is found in [4, section B.3.1]:

\In Self, the compiler uses inlining mostly for optimizing user-de�ned con-

trol structures and variable accesses, where the resulting inlined control ow

graph is usually much smaller than the original un-inlined graph. These

sorts of inlined constructs are already `inlined' in the traditional language

environment. Inlining of larger `user-level' methods or procedures does usu-

ally increase compile time and compiled code space as has been observed in

traditional environments...".

� We share with Jagannathan and Wright [10] three test programs: Maze,

Boyer and Matrix. For all of them, we have measured the same speed

improvement but our techniques do not increase the object �le size while

that of Jagannathan and Wright enlarges it by 20%.

� In [2] Appel reports on an average speedup of 5% for the labels-inlining. Our

measures do not allow us to conclude in a same way. We have found that the

main e�ect of the labels-inlining is to reduce the size of the inlined programs.

As suggested by Appel his improvement may come from the reduction of

the closure allocations. Less closures are allocated because in a Cps style,

labels-inlining and its hoisting of loop invariant arguments may avoid the

construction of some continuations.

Conclusion

We have shown in this paper that the combination of a decision algorithm with

di�erent expansion frameworks makes the inline expansion optimization more

valuable. It improves run time performances (about 15% on average) while avoid-

ing its traditional drawback, the object code size growth. The decision-making

algorithm we have presented is based on static compile time informations and

does not require user annotations or pro�ling data. The expansion framework

allows inlining of recursive functions. Both are easy to implement. In Bigloo,

our Scheme compiler, the decision-making algorithm and the di�erent expan-

sion strategies constitute less than 4% of the whole source code.

Acknowledgments

Many thanks to Christian Queinnec, Xavier Leroy, Jeremy Dion, Marc Feeley,

Jan Vitek and Laurent Dami for their helpful feedbacks on this work.



References

1. A. Appel. Compiling with continuations. Cambridge University Press, 1992.

2. A. Appel. Loop Headers in �-calculus or CPS. Lisp and Symbolic Computa-

tion, 7:337{343, December 1994.

3. H. Baker. Inlining Semantics for Subroutines which are recursive. ACM

Sigplan Notices, 27(12):39{46, December 1992.

4. C. Chambers. The Design and Implementation of the SELF Compiler,

an Optimizing Compiler for Object-Oriented Programming Languages.

Technical report stan-cs-92-1240, Stanford University, Departement of Computer

Science, March 1992.

5. K. Cooper, M. Hall, and L. Torczon. Unexpected Side E�ects of Inline Sub-

stitution: A Case Study. ACM Letters on Programming Languages and Sys-

tems, 1(1):22{31, 1992.

6. J. Davidson and A. Holler. Subprogram Inlining: A Study of its E�ects

on Program Execution Time. IEEE Transactions on Software Engineering,

18(2):89{101, February 1992.

7. J. Dean and C. Chambers. Towards Better Inlining Decisions Using Inlin-

ing Trials. In Conference on Lisp and Functional Programming, pages 273{282,

Orlando, Florida, USA, June 1994.

8. W. Hwu and P. Chang. Inline Function Expansion for Compiling C Pro-

grams. In Conference on Programming Language Design and Implementation,

Portland, Oregon, USA, June 1989. ACM.

9. IEEE Std 1178-1990. IEEE Standard for the Scheme Programming Lan-

guage. Institute of Electrical and Electronic Engineers, Inc., New York, NY, 1991.

10. S. Jagannathan and A. Wright. Flow-directed Inlining. In Conference on Pro-

gramming Language Design and Implementation, Philadelphia, Penn, USA, May

1996.

11. R.W. Scheier. An Analysis of Inline Substitution for a Structured Pro-

gramming Language. CACM, 20(9):647{654, September 1977.

12. M. Serrano. Bigloo user's manual. RT 0169, INRIA-Rocquencourt, France,

December 1994.

13. M. Serrano and P. Weis. 1 + 1 = 1: an optimizing Caml compiler. In ACM

SIGPLANWorkshop on ML and its Applications, pages 101{111, Orlando (Florida,

USA), June 1994. ACM SIGPLAN, INRIA RR 2265.

14. R. Stallman. Using and Porting GNU CC. for version 2.7.2 ISBN 1-882114-

66-3, Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA

02111-1307, USA, November 1995.


