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Abstract

A flow-directed inlining strategy uses information derived

from control-flow analysis to specialize and inline procedures

for functional and object-oriented languages. Since it uses

control-flow analysis to identify candidate call sites, flow-

directed inlining can inline procedures whose relationships

totheir call sites are not apparent. For instance, procedures

defined in other modules, passed as arguments, returned as

values, or extracted from data structures can all be inlined.

Flow-directed inlining specializes procedures for particular

call sites, and can selectively inline a particular procedure

at some call sites but not at others. Finally, flow-directed

inlining encourages modular implementations: control-flow

analysis, inlining, and post-inlining optimizations are all or-

thogonal components. Results from aprototype implemen-

tation indicate that this strategy effectively reduces proce-

dure call overhead and leads to significant reduction in exe-

cution time.

1 Introduction

Functional languages like Scheme [7] or ML [17], and object-

oriented languages like Self [5] or Java [24], provide abstrac-

tion through the use of first-class procedures and objects.

These mechanisms encourage modular programming and en-

able elegant programming paradigms. However, expressivity

of this kind haa often come at the price of poor performance.

A significant factor contributing to this performance loss is

the overhead of pervasive procedure calls and method dis-

patches. In the absence of any compile-time optimizations,

these overheads can be significant, especially for programs

that make liberal use of data and control abstractions.

Inlining is an optimization that trades code space for time

by replacing a procedure call with the called procedure’s

body. Inlining has two important benefits. First, it elimi-

nates procedure call overhead. This overhead includes the
cost of passing arguments, saving and restoring registers,

building return linkage information, and branching to the
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procedure body. Second, by merging the procedure body

with its calling cent ext, inlining enables other optimizations

to specialize the caller and callee together.

The same mechanisms that make functional and object-

oriented languages more expressive conspire to make inlining

more difficult. In functional languages, the called function

may be computed by a complicated expression that returns

a procedure value. In object-oriented languages, the value

of a virtual method is based on the types of its argument

objects. Thus the procedure or method applied at a partic-

ular call site may not be obvious. An inlining algorithm for

these kinds of languages is unlikely to be very effective if it

does not take a program’s control- and data-flow properties

into consideration.

Flow-directed inlining uses an approximation of a program’s

control- and data-flow to identify call sites where procedures

may be inlined, and to estimate a procedure’s size when

specialized for a particular call site. Flow-directed inlining

has several important attributes:

● Generality. All user-defined procedures are candidates

for inlining. Inlining is not limited to system-defined

primitives, global procedures, specially marked proce-

dures, or procedures that have no free variables.

Since inlining decisions are driven by a global control-

flow analysis, inlining can be performed at call sites

where the called procedure is not syntactically obvi-

ous. For higher-order languages, our system is capa-

ble of inlining procedures passed as arguments, im-

ported from modules, extracted from data structures,

or encapsulated as methods within objects. For object-

oriented languages, flow-directed inlining can optimize

calls to virtual methods. Thus, flow-directed inlining

minimizes the penalty for liberally using higher-order

procedures and objects to define layers of abstraction

and encapsulation.

● Selectivity. Inlining decisions are highly selective. A

particular procedure may be inlined at some call sites,

but not at others. The decision to inline at a call site

is baaed on an estimate of the procedure’s size when

specialized for that call site. Flow analysis facilitates

constructing different size estimates for a procedure at

different call sites based on the portions of the proce-

dure that may be reached from those call sites. For
example, large procedures can be aggressively inlined
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when determination of conditional tests in their bodies

permits entire blocks of code to be pruned.

● Modularity. The structure of the flow analysis is in-

dependent of the design of the inlining algorithm. In-

lining decisions are in turn made independently of any

subsequent optimizations. Thus, different flow analy-

ses can be substituted without necessitating changes

to the inlining algorithm, and different inlining algo-

rithms can be incorporated without modifying the flow

analysis. This orthogonality makes it simple to up-

grade a compiler that uses our strategy to include more

flow powerful analysis techniques as they become avail-

able, or to incorporate new inlining strategies without

modifying existing optimizations or analyses.

We have implemented a source-to-source inlining optimizer

for RARS Scheme programs [7]. Initial experimental results

from our prototype are very encouraging. For the programs

in our benchmark suite, flow-directed inlining improves ex-

ecution times by an average of 25~0. For several of these

benchmarks, performance doubles. On average, code sizes

remain roughly the same as the original program. Based on

these results, we believe flow-directed inlining is an effective

optimization technique for functional and object-oriented

languages.

The remainder of the paper is organized as follows. Sec-

tion 2 gives an informal overview of flow-directed inlining.

Section 3 gives a formal description of the algorithm. We

present performance results in Section 4, and place flow-

directed inlining in the context of related work in Section 5.

2 Overview

Flow-directed inlining consists of three steps: control-flow

analysis, inlining, and local optimization.

2.1 Flow Analysis

We first perform a polyvariant [4, 16] control-flow analysis

over the input program. Polyvariance is important for two

reasons. First, because it disambiguates different uses of

a procedure at different call sites, polyvariance yields very

precise flow information. This enables many call sites to
be identified as candidates for inlining. Second, because

it analyses a procedure with respect to a specific call site,

polyvariance enables specialization of the procedure for the

call sites where it is inlined.

Inlining can be performed at a call site only if there is a

unique procedure applied at that site. For example, in

(define g (J (f X) (f x)))

the call site (f x) is considered a candidate for inlining

only if flow analysis determines that there is a single abstract

value associated with f in the call. This value must be an

abstract closure. An abstract closure corresponds to a set

of exact closures. These exact closures may be closed over

different environments, but they must all share the same

code. In other words, for f to be inlined, all calls to g must

supply closures that are created from evaluation of the same

J-expression in the program.

To illustrate, consider the following object-oriented program

fragment:

(define make-network
(A ( args)

(i’ (msg)

(case msg
( (open) (~ (addr) open a new port))

((close) (A (port) close a port))

((send) (J (msg port)
send msg to port ) )

((receive) (A (port)
receive from port ) )

. ..))))

A network is a procedure that dispatches on a request. A

network is created by calling make-network with a set of

arguments. Given a network N, the expression

((N ‘open) “http://www.foo.com”)

invokes a procedure to open a connection to the specified

network. The flow analysis will associate N with the proce-

dure

(J (msg) (case msg . ..))

and (N ‘open) with the procedure

(J (addr) open a new port). (*)

This approach to identifying potential inline sites is quite

different from traditional approaches to inlining that rely

on syntactic heuristics. For example, in the expression

(let ((f (A (N)
. . .
((N ‘open) “http://www.foo.com”)

. ..)))
. . .
(f (make-network m-gs))

aconventional inlining optimizer will inline procedure (*) at

( . . . “http://www,foo.com”) only if it also irdines f, per-

forms significant simplification, andrepeats the inline algo-

rithm on the simplified program. In contrast, flow-directed

inlining may treat the call (. . . “http:/ /www. foo. corn’!) as

a candidate for inlining even if f is not inlined. All inline

decisions aremade prior to any simplification.

2.2 Inlining

The inlining algorithm proceeds depth-first over the pro-
gram, inlining within a procedure P before inlining P itself.

Closures at candidate call sites whose costs lie below a fixed
threshold are inlined. Large procedures are not penalized

by prohibiting inlining within their bodies. Even if a pro-

cedure P is too big to be inlined at any of its call sites,

procedures applied within P can still be inlined within P’s

body provided the constraints described above are satisfied.

The algorithm builds a loop when inlining a call site would

otherwise lead to infinite unfolding.
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(define nap

(A (f al . ergs )

(letrec ([mapl (A (f 1)

(if (null? 1)

‘()

(cons (f (earl))
(mapi f (cdr 1)))))1

[map* (~ (lists)

(if (null? (car lists))

‘()
(cons (apply f (map car lists))

(map* (map cdrlists)))))l)

(if (null? ergs)

(napl f al)
(map* (cons al args))))))

Figure 1: Scheme’s map procedure

((J (fal . args )

(letrec ( [mapl (A (f 1) . . . )1

[map* (A (lists) . . . )1)

(letrec ([mapl (A (f 1)
(if (null? 1)

‘()

(cons (car (car 1))
(mapl f (curl)))))])

(mapl f al))))
car m)

Figure 2: Result of inlining (map car m) prior to simplification.

(letrec ([mapl
(A (1)

(if (null? 1)

‘()
(cons (car (car 1))

(mapl (cdr 1)))) )1)

(mapl m))

Figure 3: Result of inlining (map car m) after simplification.

To illustrate the inlining algorithm, consider Fig. 1 which

provides animplementationofScheme’s mapprocedure. Two

local procedures are defined inmap’s body: rnapl is called

when map is invoked with a unary procedure, and map* is

invoked for all other cases. Because mapl operates over pro-

cedures whose arity is known, it is more efficient than map*

whose implementation uses an expensive apply operator to

handle the variable-arity case.

Flow analysis helps compute reasonably precise cost esti-

mates. Consider the call (map car m) . The cost of inlining

map at this call siteis dependent on how much specialization

can be performed at the inlined site. Because flow-directed

inlining uses results from a polyvariant flow analysis, it can

tailor its cost estimate based on the specific context in which

a call occurs. In this call, flow analysis reveals that the

conditional test (null? args) will be true, and hence the

else-branch will not be taken. Thus, the cost estimate for
this call need not include the else branch or the definition of

map*. If map is inlined, the outer conditional test, the defi-

nition of map*, and its call will all be pruned inthe inlined

copy. Fig. 2 shows the result of inlining (map car m) prior

to simplification.

2.3 Simplification

After inlining, &substitution, dead-code elimination, and

local code transformations are performed. These transfor-

mationsinclude restructuring procedure definitions andcalls

to eliminate unused formal parameters. These optimizations

are all syntactic and use no flow information. The simpli-

fier performs no transformations that violate the results of

the flow analysis. Hence, other optimizations could use flow

information generated for the original program when oper-

ating over the inlined version. Fig. 3 shows the result of

applying the simplifier tothe inlined code for (map car m).
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3 Flow-directed inlining

In this section we give a precise account of our flow-directed

inlining strategy and the flow analysis that drives it. We

have used this same analysis to eliminate run-time checks

from dynamically typed programs [15].

3.1 Source language

The abstract syntax for our Scheme-like source language has

labeled expressions eL of the form

e’ ::=

f’ ::=

C’lf’\z’

(p e$... ek)f

(call e$ e! ...e~)~

(begin e~ . . . e% )

(if e; e; e$)i

(let ((ml e~)... (zn ey)) e$)~

(letrec ((YI $’)... (yn k“)) 6$)1

(cons e! e$ )

(car e~)~

(cdr e~)~

(set-car! ef e~)i

(set-cdr! e; e$)t

(A (xl . ..ZW) ef)i

where c c Const are constants, p 6 Prim are primitives,

x, Y, z ~ Var are va~iables, and 1 c Label are labels. La-
bels, which are not present in the concrete syntax, are dis-

cussed below. A A-term constructs an anonymous proce-

dure; terms beginning with p are uses of primitive opera-

tions; call introduces a procedure call; begin and if are

sequencing and conditional operations; let provides non-

recursive local bindings; letrec constructs named recursive

procedures; cons constructs mutable pairs; car and cdr are

the first and second projections on pairs, and set-car! and

set - cdr ! mutate the components of pairs.

Free variables (F’V) and bound variables (EN’) are defined

as usual for a lexically scoped language [3], with let binding

its variables XI . . . X. in eb and letrec binding its variables

in all of ~1 . . . ~n and eb. The bound expressions jl . . . .f~ of

a let re c-expression must be procedures. Closed programs

are expressions with no free variables.

We sometimes distinguish different uses of variables as fol-

lows. First, a meta-variable named y must be bound by a

letrec-expression. Second, a subscript on a variable occur-

rence indicates how the variable is bound. A variable occur-
rence like XIA1 indicates that x is bound by a ~-expression. A

variable occurrence like x~l, ~ or y~l,~ indicates that the vari-

able is bound by the let- or letrec-expression with label 1’,

except that recursive variable occurrences within the bind-
ings of a letrec-expression appear as yfrecl. The following

expression illustrates the use of these conventions:

(let ((z O))

(letrec ((y (J (z) (call y[,.cl 21x1))))

(call YII,I ZP,I))12 )1’

In order to unambiguously name different components of a
program,weassume programs have two properties. First,

since we use labels to identify subterms of a program, each

subterm of a program must have a unique label. Second,

since we refer to a specific variable by its name, we assume

that all free and bound variables in a program are distinct.

This condition can be met by renaming bound variables ap-

propriately.

Like Scheme, this source language is latently typed—no

static typing discipline is imposed on programs. Like both

Scheme and ML, this source language has an ordinary call-

by-value semantics.

3.2 Flow analysis

Flow analysis determines the sets of

bound to variables and returned from

values that may be

subexpressions. We

name these sets abstract values; in other words, a single ab-

stract value represents a set of exact values. Simple mono-

variant flow analyses like OCFA [23] and SBA [13] associate a

single abstract value with each variable and subexpression.

Polyvariant analyses [4] associate multiple abstract values

with each variable and expression, distinguishing them by

contours that abstract the program’s run-time state. We

call these variable-contour pairs and label-contour pairs pro-

gram points. Let A value be some set of abstract values and

Contour be some set of contours. A jlow analysis of a closed

program P is a function

F : ( Var- x Contour) + (Label x Contour) S Avalue

that maps the program points of P to abstract values. F(z7 K)

identifies the values that may be bound to x in contour K.

F(Z, K) identifies the values that may be returned by the

subexpression labeled 1 in context K.

Abstract values are defined as follows:

a c Avalue =

T c Aconst =

(1, p, rG)~ G Aclosure =

(l, fc)r 6 Apair =

p 6 Aenv =

K E Contour

Aconst + Aclosure + Apair

{true, false, nil, number,. ..}
Label x Aenv x Contour

Label x Contour-

Var 5- Contour

An abstract value a is a set of abstract constants, abstract

closures, and abstract pairs. Abstract constants like true,
false, and nil each denote a single exact value, while ab-

st ract constants like number denote a set of exact values.

An abstract closure (1, p, K) ~ identifies procedures created

from the ~-expression (~ (Z I . . . w~ ) eb)~. The contour K

of an abstract closure, paired with an argument x, or a label

of a sub expression of e~, determines the program points for
the body of the abstract closure. Thus two abstract closures

that share the same label but use different contours will have

different program points. The abstract environment p of an

abstract closure records the contours in which its free vari-

ables are bound. An abstract pair (1, K)* identifies pairs

constructed from (cons el ez ) ~ in contour K.

Contours abstract different execution contexts and are used

to distinguish argument bindings and subexpression results
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arising at different points in a program’s execution. The set

of contours must be finite to ensure that the analysis com-

putes finite information, i.e., that the analysis terminates.

Since the subsets of variables and labels that a program uses

are also finite, a flow analysis can yield only finitely many

abstract values for a particular program. Within this con-

straint, the choice of the contour set governs the precision of

the analysis. Before discussing a particular set of contours

suitable for flow-directed inlining, we introduce the analysis

proper.

Given a program P and a finite function F of appropriate

type, F is a flow analysis or ftow graph for P if it satisfies

the relation A in Fig. 4. The rules for constants, primi-

tive applications, and A-expressions force the corresponding

program points or flow graph nodes to include appropri-

ate values. The function Abstract ValOf maps a constant to

its abstract value; for example, Abstmct ValOf (#f ) = fa Ise

and Abstract ValOf (5) = num her. The function AbstractRe-

sultOf maps a primitive to its abstract result; for example,

AbstractResultOf (+) = num her.

The remaining rules introduce constraints or edges between

nodes. The rule for variables constrains the abstract eval-

uation of a variable z to include the abstract value bound
to it in contour p(x). For each abstract closure that can

arise in the function position of a call, the application

rule introduces two kinds of constraints. The first kind,

~(lj, K) S F’(xj, K’), requires the formal parameters of the
abstract closure to include the abstract values of the ac-

tual parameters. The second kind, ~(lb, K’) ~ F(i, K), re-

quires the application node to include the abstract value

arising from the evaluation of the body of the abstract clo-

sure. In the figure, the notation p[m . . z~ I+ K] means

the functional update or extension of the environment p at

each of q . . . zn to K. The constraint in the rule for begin

returns the abstract value of the last subexpression as the

result of the begin expression. In the rule for conditional

expressions, evaluation of the then-clause (resp. else-clause)

is conditional upon true (resp. fa k.e) arising as a possible

value of the test. If the abstract value of the test includes

both true and fa Ise, both the then-clause and the else-clause

contribute to the result of the conditional expression. If the

test diverges and its abstract evaluation yields the empty

set, neither the then-clause nor the else-clause is evaluated.

None of the rules in the top part of Fig. 4 construct new con-

tours. To provide polyvariance, the rules in the second sec-

tion of the figure construct new contours for let-bound clo-

sures in a manner that mimics the actions of a polymorphic

type system. Hence we call this form of polyvariance poly-

morphic splitting [15]. Under polymorphic splitting, con-

tours are finite strings of labels. The el subexpression of

a let-expression evaluates in a contour K : 1 obtained by

appending 1 to the label string K. This contour is cap-

tured in any abstract closures created by el. Since only

let-expressions extend contours, the nesting depth of let-

expressions within their el subexpressions bounds the length

of contours. At a subsequent use of the let-expression’s

variable, say z-f], the contours in abstract closures bound to

z are modified by replacing 1 with 1’ (the notation K[l° /1] in
the figure means the contour derived by replacing Z“ with

1 in K). In this manner, different uses of the same abstract

closure evaluate in different contours. The figure presents a

rule for let-expressions with a single variable; the extension

of this rule to multiple variables is straightforward, and is

omitted here.

To illustrate polymorphic splitting, consider the following

expression:

(let ((f (J (x) x)1))

(begin (f2 #t)

(+ (f’ o) 1)))0

The abstract closure constructed for f is (1,0, [0])~ where

1 is the A-expression’s label, 0 is the empty environment,

and the [0] is contour consisting of the label of the let-

expression. At f 2, this closure is split to (1,0, [2])~, hence

the application (f 2 #t) binds x to {true} in contour [2].

At f 3, f‘s closure is split to (1,0, [3])~, hence the applica-

tion (f 3 O) binds x to {num her} in contour [3]. Since the

two applications of f evaluate in different contours, the ap-

plication (f 3 O) yields the abstract value {num her}. Were

the two applications evaluated in the same contour, (f3 O)

would yield the less precise result {n umher, true}. For ad-

ditional explanation and examples of polymorphic splitting,

we refer the reader to an earlier paper [15].

The third part of Fig. 4 presents a polymorphic splitting

rule for letrec-expressions. As in a typical polymorphic

type system, only occurrences of variable y in the body eb

of (letrec ((y f)) eh) are polyvariant. We cdl these non-

rscursive occurrences, while the occurrences of y within f

are recursive occurrences. Recursive uses of y evaluate in

the most recent contour of a non-recursive use of y. To

illustrate, consider the following expression:

(letrec ( (last (A (1)
(if (null? (cdr 1))

(car 1)

(last (cdr 1)))) 1))

(begin (lastz (cons 1 (cons 2 ‘())))

(last3 (cons “a” (cons “b” ‘())))))

The abstract closure created for last is (1, (b, []) ~ where

1 is the J-expression’s label. At lastz, the abstract clo-

sure for last is split to yield (1, [last I+ [2], [2])~. During

abstract evaluation of (last 2 . . . ), recursive references to

last yield the same abstract closure (1, [last * [2], [2])x.

Similarly, during abstract evaluation of (last3 . ..). the ab-

stract closure for last is split to yield (1, [last I+ [3], [3])~,

and recursive references to last yield the abstract closure

(1, [last * [3], [3])>. In each case, the recursive calls evalu-

ate in the same contour as the outermost call. Hence last’s

argument 1 is bound in different contours for the entire eval-

uation of each recursive application of last.

The last part of Fig. 4 presents rules for construction, pro-

jection, and mutation of pairs. The rules merge values in

the store only when the program’s control flow makes this

necessary.

For a given program, there are many flow graphs that satisfy

relation A. We want the least such graph. It is not difficult

to prove that for any program P the least flow graph exists
and is unique. Nor is it difficult to implement an algorithm

that constructs this flow graph [15].
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AbstractValOf (c) E F(l, K)

Abstractl?esvlt Of (p) E F(1, K) and for all i = 1... n .4[e\ ]pK

(t, p, m)> e F(1> K)

F(z, p(z)) G F(l, K)

for all i = O.. .n A[e\]p~ and

for all (1’, p’, fi’)~ c F(lO, K) where (~ (m ...x~) e$)~’ c P

F(lj, K) ~F(~jjK’) forallj=l... nand

A[ef]p’[zl . . . X. s K’]K’ and

F(lE,, K’) ~ F(Z, K)

for all i = 1.. .n d[e~]p~ and F’(1~, K) ~ F(Z, K)

A[e~ ]PK and

(true 6 F(ll, K) a d[e$]p~ and F(lz, K) g F(~, K)) and

(false 6 F(lI, K) * A[e$]pc and ~(Z3,K) g ~(1, K))

for all (1’, K’)Z G F’(11, K) where (cons e~ e~)’ G P

F(12, K) s F(h, K’)

Figure 4: Relation A defining flow analysis F of program P.
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While our implementation of flow-directed inlining uses poly-

morphic splitting, adapting our inlining strategy to other

polyvariant analyses is straightforward.

3.3 Identifying inlining sites

A polyvariant flow analysis determines abstract values for

the function position of each call site. If the function po-

sition for a particular call site contains the same single ab-

stract closure in every contour, it is possible to specialize

and inline the procedure at that call site. This leads to the

following inlining condition.

Inlining Condition 1. If (call e$ el . . . eP) ~ is a call

site such that

u I’(lo,l+ = {(%/%4,}
K’~ Contour

then (~ (z1 . . ,z~) eb)m can be specialized to contour K and

inlined at call site 1, provided n = p.

The proviso n = p ensures that we do not eliminate ap-

plications which raise an error due to an argument count

mismatch.1 We describe specialization below. For now, let

(~ (xl . . . z~ ) e!) be the specialized procedure. If condi-
tion 1 holds, we can inline the specialized procedure by re-

placing the call at 1 with

(call (A (w Z1.. .zn) ej) eO el... eP)

where w is a fresh variable. Adding the extra argument

w ensures that our transformation preserves termination

and side effect behavior that may result from evaluating

eo. Moreover, as we describe in Section 3.5, the extra argu-

ment will also be used to ensure proper access to the inlined

procedure’s free variables. Simple local transformations now

suffice to eliminate the procedure call overhead.

3.4 Specializing inlined procedures

Inliniru.z Condition 1 determines an initial set of call sites

where inlining can be performed. For such a call site 1,

we can specialize the unique procedure m called at 1. Spe-

cialization involves (i) pruning code within m that is never

reached from call site 1, and (ii) recursively inlining at call

sites within m.

Pruning unreachable code is most important for conditional

expressions. Let (m, p, K)~ be the unique closure called at
1. To prune unreachable code at a conditional expression

(if e! ez es) within m, we use contour K, to find an upper

bound F(1I, K) on the set of values that the test expression

el can vield when m is called from 1. If F(1I, K) does not

include-true, the consequent e; can be pruned. ‘If F(1I, K)

does not include false, the alternative eq can be pruned. If

F(1I, K) includes neither true nor false, both ez and es can

be pruned.

‘If the arities do not match, we leave the application done. We
could also issue a warning, raise a compile-time error, or insert a call

to an error handler.

Pruning is also possible for most other expression forms. For

example, assuming subexpressions are evaluated from left to

right in an application, all subexpressions to the right of a

divergent subexpression whose abstract value is empty can

be pruned. To simplify the presentation, we have included

pruning only for conditionals. Our implemented algorithms

for flow analysis and inlining include pruning wherever pos-

sible.

The second kind of specialization is recursive inlining at call

sites within a procedure that is being inlined. Inlining Con-

dition 1 identifies call sites where inlining is possible within

the unspecialized procedures of the original program. To

identify candidates for inlining within a specialized proce-

dure, we employ a similar condition that takes into account

the specialization contour.

Inlining Condition 2. Let (m, p, K)~ be an abstract CiO-

sure that is being inlined at call site 1 and specialized to con-

tour K. A call site (call 2? 61... ~~)1 within m cart be

inlined in the specialized version of m if

F(io, K) = {(rii$~)A}

and closure m has arity $.

That is, we can inline A at call site ~ within the specialized

version of m if the flow analysis identifies a unique abstract

closure at program point (~0, K). Support for recursive inlin-

ing follows naturally from a polyvariant flow analysis.

3.5 Inlining procedures with free variables

Our discussion of inlining has so far neglected an important

issue in a language with higher-order procedures and lexical

scoping. How do inlined procedures gain access to the values

of their free variables?

To answer this question, we define a target language that

adds an ordered list of free variables [z1 . . . z~] to each A-

expression:

(~ [ZI . ..2%] (Z1... zn) eb)

The target language also includes an expression form

(cl-ref el n)

to access the nih element of a closure’s free variable list. The

cl-ref operator (short for closure-reference) requires el to

evaluate to a closure.

When a procedure with free variables is inlined, all refer-

ences to these variables are replaced with cl-ref operations.

To illustrate, suppose that at (call eo el . . . en ) we inline

(A (zI... z~ ) eb) which has {z1 . . . z~ } free. The original

J-expression is replaced with

We replace the call with

(call (J (w z~. ..zn) e:) eo el.. .en)
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where w is a new variable and ej is a specialized copy of eb

with references to zi replaced by (cl-ref w i).

The cl-ref operation is easy to implement in a compiler

that uses flat closures [2]. A closure record consists of a code

pointer and the values of the variables in the free variable

list for that procedure. A compiler that uses linked closures

may require additional information in the cl-ref operation

to indicate the forms of the linkage structures.

3.6 An algorithm

Fig. 5 collects the above observations into a complete inlin-

ing algorithm.

Given a flow analysis F for a program P, the transformation

Z[e]tcp takes a subexpression e of P, a contour K, and a loop

map p, and produces an equivalent inlined and specialized

expression. The initial contour for P is the special contour
? and the initial loop map is the empty map. The contour

? denotes the union of all possible contours, as in Inlining

Condition 1. In other words,

F(l, ?) = U F(l,/c).

ICEContotw

The contour parameter K of the algorithm selects a par-

ticular context in which to specialize subexpressions (see

the condition F(10, K) = {(t’, p’, K’)~} in the rule for ap-

plications, and the various conditions in the rule for if-

expressions). Since the original copy of a A-expression must

not be specialized to any specific contour, the transforma-

tion of its body is performed in the special contour ?.

To prevent uncontrolled unwinding of recursive calls, the

loop map p maps label-contour pairs to variables, If, while

inlining procedure 1’ in contour K’, the algorithm encounters

another call site for 1’ in contour K’ (see the second case of

the rule for applications), it constructs a loop by binding a

fresh variable to the inlined procedure at the initial call site

with letrec. In fact, the algorithm int reduces a let rec for

every inlined procedure, whether recursive or not, but subse-

quent local simplification removes any unnecessary bindings.

This method of controlling unwinding avoids unrolling loops.

Loop unrolling can be a valuable optimization and would be

easy to include in this framework, We have intentionally

avoided unrolling loops in order to isolate the benefits of

irdining.

3.7 Making inlining decisions

Inlining every call site that is a candidate for inlining is im-
practical sa it can lead to exponential code growth. To limit

irdining to those sites where it is likely to be most profitable,
Fig. 5 requires the predicate h-dine? to hold for the proce-

dure body when specialized for the contour and loop map

under consideration. This predicate estimate the sizes of the

generated code for the inlined procedure at a particular call

site, and limits inlining to cases where the generated code is

smaller than some threshold $ize2. In the next section, we

present performance results for various inlining thresholds.

3.8 Local Simplification

After inlining, we perform some simple optimization that

are based purely on local syntactic criteria. These include p.

reductions that do not significantly increase code size, sim-

ple constant propagation and constant folding, eliminating

unused bindings, and discarding purely functional expres-

sions whose result is never used.

4 Performance

We have implemented a source-to-source flow-directed in-

lining optimization for the full R4RS Scheme language [7].

Given a Scheme program and an inline threshold T, our op-

timizer inlines procedures whose specialized size is estimated

to be less than T. We use Chez Scheme [11] to compile the

optimized programs to native code.

Without access to Chez’s internal data representations, it is

impossible to implement cl-ref with the same efficiency as

a variable reference. Indeed, using a faithful implementation
of the algorithm from the previous section, we found the pre-

mium for accessing variables via cl-ref masked the benefit

of inlining. Therefore, the results presented in this section

reflect an inlining strategy in which the Inline ? predicate

requires inlined procedures be closed up to top-level vari-

ables. Under this constraint, the inlining algorithm never

generates cl-ref operations. The algorithm will still allow

a procedure P that has a free variable z to be inlined at call

site G if (i) z occurs in a conditional branch which can be

eliminated in the specifllzed copy of P at C, or (ii) z refers

to a procedure that that will be inlined. In either case, a

free variable in the source does not appear in the specialized

version. Surprisingly, this inlining strategy leads to consis-

tent performance improvements for all programs we have

tested. For many of the benchmarks in our test suite, the

performance improvements are significant. We would expect

even greater improvements with an efficient implementation

of cl-ref since this would enable inlining open procedures.

We applied our optimizer to the benchmarks listed in Ta-

ble 1. These benchmarks are characteristic of a wide range

of Scheme programs, and none were written with knowledge

of the inlining strategy used.

The program Lattice enumerates the lattice of maps be-

tween two lattices, and is mostly first-order. Boyer is a

term-rewriting theorem prover. Graphs counts the number
of directed graphs with a distinguished root and k vertices,

each having out-degree at most 2. It makes extensive use

of higher-order procedures, and is written in a continuation-

paasing style. Given an n x “n random matrix &f with {+1,

-1} entries, Matrix tests whether A4 is maximal among all

2The algorithm in Fig. 5 requires constructing the specialized ver-
&rn of the procedure body before deciding if it should be inlined.
Our implementation uses an equivalent but mwe efficient algorithm
that estimates the size of the specialized procedure without actually
constructing it.
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Z[(call e$ el... en)]rcp = I
Z[(begin el...e~)]~p =

Z[(let ((z cl)) e2)1]6p =

Z[(letrec ((y ef)) e2)*]q4 =

Z[(cons el ez)]tcp =

Z[(car el)]~p =

Z[(cdr el)]tcp =

Z[(set-car! el ez)]~p =

Z[(set-cdr! el ez)]~p =

c

(p Z[e*]Kp. ..Z[en]tsg)

(A [Z1...zm] ccl . ..z~) ~[eb]?p) where [zl. ..z~]=FV ((A (q. ..zn) eb))

z

(letrec if

((y (A (w Z1.. .zn) and

(let ((ZI (cl-ref w l))) and

and.
where

((~m (cl-ref w m)))

T[eb]K’P’) ) ) )

(call Y Z[eO]KK .Z[ellKp .4. ~[enlfiP))

(call yZ[eO]Kp Z[el]K#. ..Z[en]fc~)
if

and

eo #(A...)

F(h, K) = {(1’,/, IC’)A}
(1’, K’) @ Dom(p)

rd~ne? (~[eb]K’#’)

(A (xl . ..Zn) eb)(’ 6P

y, w fresh

P’ = P[(~’, ~’) * VI
[.Zl . . ..%] =~v((~ (Xl...%) eb))

F(lo, K) = {(1’, P’, J)A}

p(l’,lc’)=y

(call Z[eO]sp Z[el]~p. ..Z[en]xp) otherwise

(begin Z[el]%&. . . ~[e~]~p)

(if Z[e,]KKZ[e2]~p Z[e3]~p) if{true, false} ~F(ll, K)

(begin Z[el]tcp Z[ez] KP) if {true} ~F(ll,K)

(begin X[el]fip Z[e~]xp) if {false} ~F(lI, K.)

Z[el~Kp otherwise

(let ((x T[el](K:l)p)) ~[e21w)

(letrec ((y ~[el]~p,’)) ez) where P’=P[(lI, K) *Y]

(cons Z[el]Kp Z[ez]xp)

(car ~[el]~p)

(cdr Z[el]tcfl)

(set-car! Z[el]Kp Z[e2]@

(set-cdr! Z[el]w Z[e2]@

Figure5: Aflow-directed inliningalgotithm
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Program

Lattice

Boyer

Graphs

Matrix

Maze

Splay

Nbody

Dynamic

Source

Lines

207

381

489

527

568

934

964

2046

Analysis 11”-‘-”-‘----”-‘--Ratio of object code size

Times to original object code size

(in sees. ) II for vari&s inliiin

.2

1.4

.3

.4

.5

4.0

2.6

110.3

50

1.02

.95

.79

.93

.94

.94

1.25

1.52

100

1.02

1.05

.87

.97

.98

.94

1.53

1.65

200

1.06

1.10

.83

.96

.96

.95

1.66

2.36

thresholds

500

1.69

.97

.81

1.13

.93

.95

2.29

2.48

1000

3.09

.95

.80

1.21

.89

.95

2.62

2.48

Table 1: Benchmark programs.

matrices of the same dimension obtainable by simple re- st its highest optimization level. At this level, the compiler

ordering of rows and columns, and negation of any subset

of rows and columns. Like Graphs, this program is writ-

ten in continuation-passing style. Maze generates a random

maze and computes a path through it using a union-find

algorithm. It makes extensive use of records [25] and uses

Scheme’s call-with-current-cent inuat ion operator, but

is primarily a first-order program. Splay is an implementa-

tion of splay trees. It makes extensive use of higher-order

procedures and pattern matching macros [25]. N-Body is

a Scheme implementation [26] of the Greengard multipole

algorithm [12] for computing gravitational forces on point-

masses distributed uniformly in a cube. Dynamic is an im-

p Cementation of a tagging optimization algorithm [14] for

S theme. It is primarily a first-order program, but has com-

p~ex control-flow, and many deeply-nested conditional ex-

pressions.

The first column of Table 1 indicates the size of each pro-

gram in lines of source code after prepending necessary li-

brary procedures, removing comments, expanding macros,

and performing local simplifications as described in Sec-

tion 3.8. The next column indicates the time taken by

the flow analysis to analyze the program. The remaining

columns indicate code sizes after inlining for various size

thresholds. For example, the call (map car m) from Figs. 1,

2, and 3 is inlined at thresholds above 60.

Code size ratios less than one indicate that the inlined pro-

gram is smaller than the original. For example, at threshold
lI](JJ, the inlined version of Graphs is still 2070 smaller than

the original program. For most benchmarks, object code

size grows quite slowly as the inlining threshold increases.

There are two reasons for this. First, Scheme programs typ-

ically consist of many small procedures, so higher inlining

thresholds are not likely to expose many more opportunities

for inlining. Second, even when relatively large procedures

become candidates for inlining, specialization and local sim-

plification significantly reduce the size of the inlined copy.

Fig. 6 presents execution times for these benchmarks un-

der different inlining thresholds. These times were gathered

on an SGI 150 MHz MIPS R4400 workstation. The exe-

cution time for each inlined program is normalized to the

execution time of the original program after local simplifi-
cation (i.e., threshold O) when run under Chez Scheme 5.Oa

will inline calls to primitives and small built-in procedures.

Furthermore, the generated code is unsafe: inlined primi-

tives do not perform any type or bounds checking. Thus,

performance improvements shown in these graphs measure

gains above what an aggressive optimizing compiler would

ordinarily achieve.

The graphs in Fig. 6 separate execution time into mutator

time and collector time. The axis on the left of each graph

measures normalized total execution time, which is indicated

by the total heights of the bars. The axis on the right of each

graph measures mutator execution time, which is indicated

by the tops of the dark bars. Mutator time is the time taken

by the application when garbage collection is discounted.

The light part of each bar indicates time spent performing

garbage collection. For example, at size threshold 200, Maze

shows a 40% performance improvement in total execution

time. Discounting garbage collection time, which inlining

cannot (directly) affect, mut ator time has been improved by

nearly 60~0.

For all of the programs we have tested, flow-directed inlin-

ing improves execution times. Furthermore, as size thresh-

olds are increased, performance either increases or remains

roughly constant. This indicates that our size metric is be-

nign, and inlining decisions rarely impact performance neg-

atively. On average, the best performance occurs at size

thresholds between 200 and 500. At smaller thresholds, our

implementation inlines small library procedures like cadr

or a specialized version of map, but is unlikely to inline non-

trivial user-defined procedures. At higher thresholds, more

user-defined procedures are inlined, and more opportuni-

ties for specialization of these procedures become apparent.

Few additional procedures are inlined at thresholds above

500; thus, we see little further performance improvement.

Both Nbody and Matrix show performance improvement of

only roughly 10%. A relatively large percentage of these

program’s execution time is spent in tight loops, and not

in calls to out-of-line procedures. Hence, inlining exposes

few optimization opportunities. On the other hand, Maze

and Boye r both make many out-of-line calls relative to the

overall computation. Inlining these calls removes significant

overhead in these benchmarks. The same conclusion holds

to a slightly lesser extent for Graphs and Lattice.
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There is little change in collection time for most of the

benchmarks in Fig. 6. This implies that inlining does not

generally alter the amount of data allocated or the lifetime

of objects. Indeed, for most benchmarks, overall allocation

remains roughly constant. However, for Graphs, there is

a dramatic increase in collection time (and allocation) at

thresholds 50 and 100. We have three conjectures for this

behavior. First, inlining may cause more closures to be al-

located. When a procedure is inlined, any local procedures

within it are copied, and hence will construct new closures.

Also, recall that a local letrec is introduced for every in-

lined procedure. If some of these procedures are not com-

piled as tail-recursive loops, closures will be allocated for

them as well. Second, inlining may increase closure allo-

cation costs. Chez Scheme uses a flat closure representa-

tion. As a result, inlining will increase the cost of allocating

closures by introducing additional free variables into proce-

dures. Third, with Chez Scheme’s closure representation,

introducing additional free variables into procedures may

cause data to be retained longer than it would be otherwise.

We suspect that using Shao and Appel’s “safe for space com-

plexity” rule [21] would ameliorate some of these problems.

At higher thresholds, the collection times for Graphs drop.

More opportunities for simplification are exposed which pre-

sumably eliminate the troublesome closures.

5 Related work

Two independent topics related to our work have been in-

vestigated by other researchers—flow analysis and inlining.

5.1 Flow analysis

The literature on flow analysis for functional and object-

oriented languages is vast [13, 18, 22]. We limit our dis-

cussion of flow analysis to systems with polyvariance, which

we believe is key to building optimizations that scale with

program size.

A well-known approach to polyvariance proposed by Shiv-

ers [22] is to distinguish different procedure calls by call site.

In a framework similar to ours, contours are finite strings of

call site labels. An IV-CFA analysis uses the most recent

N call sites to distinguish different invocations of a proce-

dure. While call-string based analyses are highly precise,

they also appear to be quite expensive to compute [15]. In

general, polymorphic splitting provides as much, if not more,

accuracy than polyvariant call-string analyses, but at signif-

icantly lower cost.

5.2 Inlining

Cooper, Hall, and Torczon [8, 9] studied the effects of in-

lining for Fortran programs. They determined inlining sites

by hand, and were able to eliminate the majority of dy-

namically executed procedure calls from their benchmark

programs. Furthermore, they found that the opportunities

revealed by inlining mitigated object code growth~bject
code grew by only 10~o when inlining doubled the size of

the source code. However, they were unable to demon-
strate consistent speedups for the inlined programs. They

speculate that inlining did enable useful optimizations, but

the speedup from these optimizations was masked by effects

like increased register pressure, and pessimistic assumptions

made by the compiler about aliasing which lead to poor in-

struction scheduling.

Several differences between Scheme and Fortran may explain

our better results. First, our inlined programs have smaller

procedures than the inlined Fortran programs, so register

pressure is less significant. Second, Scheme compilers cannot

optimistically assume that parameters to procedure calls do

not alias. Hence inlining introduces no additional require-

ments on instruction scheduling. Finally, and most impor-

tantly, as Scheme programs tend to have more procedure

calls, there is more procedure call overhead to remove.

Chang et al. [6] constructed an automatic inlining optimiza-

tion for C programs. As with Cooper et al.’s experiments

with Fortran, Chang et al. were able to eliminate the ma-

jority of procedure calls while increasing object code size by

only 16~o. They obtained consistent performance improve-

ments that averaged about 10~o.

Much attention has been devoted to reducing the overhead

of dynamically bound method dispatches in object-oriented

languages. Recently, static analyses have been applied to

either inline most dispatches or replace them with direct

procedure calls [1, 10, 19, 20]. But with the exception of

Cecil where dispatching consumes a large fraction of execu-

tion time [10], speedups are minimal at best. We suspect

that these systems fail to improve execution times because

their compilers do not use the larger contexts constructed

by inlining to enable further optimization.

Functional language compilers like Standard ML of New Jer-

sey [2] use synt attic heuristics to guide inlining decisions. A

call site is a candidate for inlining if the called procedure is

syntactically evident; typically, the function expression is a

variable that is bound to a A-expression by let. Inlining is

intertwined with other synt act ic optimizations, so additional

inlining candidates can arise as optimization proceeds. In

contrast, flow-directed inlining separates inlining decisions

from post-inlining simplifications. Heuristics that estimate

object code size, similar to ours, are used to control code

growth. But these heuristics are necessarily more conserva-

tive, as they cannot take into account future simplifications

that may take place if inlining is performed. Furthermore,

because candidates for inlining are identified syntactically,

procedures used in a higher-order manner will not be inlined

unless other simplifications reduce the higher-order uses to

syntactic ones. We believe that for programs which make

heavy use of data and procedural abstraction, flow-directed

inlining is likely to identify more profitable sites for inlining.

6 Future Work

We have used the same flow analysis described in this paper

to eliminate run-time checks from Scheme programs [15].

We plan to combine our inlining and run-time check opti-

mization along with other optimizations that use the same

flow information. This combination should yield significant

performance improvements without compromising safety.
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