
A zoology of monads for programming

Daniel Brown
dbrown@ccs.neu.edu

February 15, 2010

Abstract

Monads are an abstraction for programming with effects—things like state, exceptions, nondetermin-
ism, and even continuation passing. Although monads are often thought of as a math trick that makes
I/O work in Haskell, they are actually just a programming trick for writing simpler and more modular
code. In this talk we will look at a variety of effectful programs, identify the redundant parts, and see
how refactoring leads us to the structure of a monad.

Time permitting, we will transfer our intuitions about monads to the nearby concept of comonads
and briefly see how they give us an abstraction for programming with context dependency.

1

1 Abstracting over failure

Abstraction

Consider:

let fin = open "grades" in
if fin = fail then
fail

else
let fout = open "new-grades" in
if fout = fail then
fail

else
let _ = untilFail (_.
let s = readline fin in
if s = fail then
fail

else
let s’ = inflate s in
writeline s’ fout) in

print "done!"

open : string -> file ∪ fail

readline : file -> string ∪ fail

writeline : string -> file -> unit ∪ fail

untilFail : (unit -> a ∪ fail) -> list a

inflate : string -> string

print : string -> unit

Ugly! Redundant! We need a new let:

Γ ` e : s ∪ fail Γ, x:s ` e′ : t ∪ fail

Γ ` letfail x = e in e′ : t ∪ fail

letfail x = e in e′ =
let x = e in if x = fail then fail else e′

letfail fin = open "grades" in
letfail fout = open "new-grades" in
let _ = untilFail (_.

letfail s = readline fin in
let s’ = inflate s in
writeline s’ fout) in

print "done!"

Nicer, but can we avoid interleaving letfail and let? Need to mark expressions that can’t fail:

Γ ` e : t

Γ ` safe e : t ∪ fail safe e = e

letfail fin = open "grades"
fout = open "new-grades"
_ = safe (untilFail (_.

letfail s = readline fin
s’ = safe (inflate s)

in writeline s’ fout))
in safe (print "done!")

Much nicer!

2

Correctness?

But have we changed anything? Not if we can prove:

letfail x = safe e in e′ = let x = e in e′

which is equivalent to:
letfail x = safe x in e = e (β)

Let’s calculate:

letfail x = safe x in e

= let x = safe x in if x = fail then fail else e

= if safe x = fail then fail else e

= if x = fail then fail else e

= . . . oops!

We’ve changed the program!

Correctness

It’s a good idea but we did it wrong—instead of − ∪ fail we want −+ fail:

Γ ` e : t

Γ ` L e : t + u

Γ ` e : u

Γ ` R e : t + u

Γ ` e : s + fail Γ, x:s ` e′ : t + fail

Γ ` letfail x = e in e′ : t + fail

Γ ` e : t

Γ ` safe e : t + fail

letfail x = e in e′ =
match e in L x -> e′

R fail -> R fail
safe e′ = L e′

The law above now holds:

letfail x = safe x in e

= match safe x in L x -> e; R fail -> R fail

= match L x in L x -> e; R fail -> R fail

= e

And the program refactoring is correct.

3

2 Abstracting over state passing

Consider:

fib : nat -> map nat nat -> nat * map nat nat
fib a m = case
member a (dom m) -> (lookup a m, m)
a = 0 or a = 1 -> (a,m)
true -> let (b,m’) = fib (a-1) m

(c,m’’) = fib (a-2) m’ in
(b+c, insert a (b+c) m’’)

Though concise, there are many mentions of the maps—and we have to be careful to use the right one!
If we’re clever we can eliminate this bookkeeping. Consider the type of fib:

fib : nat→ map nat nat→ nat× map nat nat

It wants to be a nat→ nat but it must also transform state: it relies on an input map and, in case it changes
it, produces and output map. The pattern above is sequencing on state transformers: pass the initial state
into one and thread its output state into the next— can we come up with a replacement for let that will
perform this threading for us?

λs0. let (a,s1) = f s0

(b,s2) = g s1

(c,s3) = h s2

...

−→

letst a = f

b = g

c = h

...

Γ ` e : s → t× s Γ, x:t ` e′ : s → u× s

Γ ` letsts x = e in e′ : s → u× s

Γ ` e : t

Γ ` pures e : s → t× s

letsts x = e in e′ =
λs. let (x,s’) = e s in e′ s’

pures e = λs.(e,s)

fib : nat -> map nat nat -> nat * map nat nat
fib a =
letst m = (\m.(m,m)) in case
member a (dom m) -> pure (lookup a m)
a = 0 or a = 1 -> pure a
true -> letst b = fib (a-1)

c = fib (a-2)
_ = (\m. (*, insert a (b+c) m)) in

pure (b+c)

Operators:

get : s → s× s
get = λs. (s,s)

modify : (s → s) → s → unit× s
modify f = λs. (f s, s)

put : s → s → unit× s
put s’ = λs. (*,s’)

Correctness Yes. . .

4

3 Monads embody effects

Our trick is to replace let with some letM and pureM for some type constructor M :

Γ ` e : Ms Γ, x:s ` e′ : Mt

Γ ` letM x = e in e′ : Mt

Γ ` e : t

Γ ` pureM e : Mt

As suggested by the law we saw earlier for failure, a replacement for let should satisfy its laws:

let x = x in e = e letM x = pureM x in e = e (β)
let x = e in x = e letM x = e in pureM x = e (η)
let y = (letx = e in e′) in e′′ = ; letM y = (letM x = e in e′) in e′′ = (assoc)

let x = e in (let y = e′ in e′′) letM x = e in (letM y = e′ in e′′)

Such a replacement (M, letM ,pureM) is called a monad. Easy calculations show that both replacements
we’ve seen

Fail t = t + 1
letFail x = e in e′ =

match e in L x → e′; R ∗ → R ∗ pureFail e = L e

States t = s → t× s
letStates x = e in e′ =

λs. let (x, s′) = e s in e′ s′
pureStates

e = λs. (e, s)

satisfy all three laws and are thus monads.

A monad (M, letM ,pureM) gives us a way to program with an implicit effect managed by letM :

• When we build a t + 1 expression using letFail and pureFail we are programming with a failure effect :
any subexpression can have a side effect of failing, in which case the whole expression fails.

• When we build an s → t × s expression using letStates and pureStates
we are programming with a

state effect : the whole expression is a state transformer, letStates threads the state through all the
subexpressions, and any subexpression can read and update the threaded state.

So what other monads are there and what kinds of effectful programs can we write with them?

5

4 Zoology

Fail t = t + 1
pureFail e = L e

letFail x = e in e′ = match e in L x → e′; R ∗ → R ∗

fail : Fail t
fail = R ∗

Exnerr t = t + err
pureExnerr

e = L e

letExnerr x = e in e′ = match e in L x → e′; R y → R y

throw : err → Exnerr t

throw x = Rx

catch : Exnerr t → (err → t) → t

catch (L x) f = x

catch (R y) f = f y

States t = s → t× s

pureStates
e = λs. (e, s)

letStates
x = e in e′ = λs. let (x, s′) = e s in e′ s′

get : States s

get = λs. (s, s)

put : s → States 1
put s′ = λs. (∗, s′)

Envr t = r → t

pureEnvr
e = λ . e

letEnvr x = e in e′ = λr. let x = e r in e′ r

ask : Envr r

ask = λr. r

Writerm t = t×m

pureWriterm
e = (e, id)

letWriterm
x = e in e′ = let (x, a) = e; (y, b) = e′ in (y, a⊕ b)

tell : m → Writerm 1
tell a = (∗, a)

List t = 1 + t× List t

pureList e = (e,nil)
letList x = e in e′ = concat (map (λx. e′) e)

fail : List t

fail = nil

amb : List t → List t → List t

amb = append

Dist t = FinMap t [0, 1]
pureDist e = [e 7→ 1]

letDist x = e in e′ = concat (map (λx. e′) e)

flip : [0, 1] → Dist t → Dist t → Dist t

flip p µ ν = pµ + (1− p)ν

CPSr t = (t → r) → r

pureCPSr
e = λk. k e

letCPSr
x = e in e′ = λk. e (λa. e′ a k)

callcc : ((t → CPSr u) → CPSr t) → CPSr t

callcc f = λk. f (λak′. k a) k

abort : r → CPSr t

abort r = λk. r

6

5 Slogans and intuitions

Slogans

A monad is a type you can transform just by constructing, (X → MY) → MX → MY , and there’s
always a trivial construction X → MX.

A comonad is a type you can transform just by observing, (WX → Y) → WX → WY , and there’s
always a trivial observation WX → X.

effects monads construction X → MY
context dependency comonads observation WX → Y

Definitions Three equivalent definitions (plus laws):

Γ ` e : Ms Γ, x:s ` e′ : Mt

Γ ` letM x = e in e′ : Mt

Γ ` e : t

Γ ` pureM e : Mt (1)

Γ ` e : s → Mt

Γ ` extendM e : Ms → Mt

Γ ` e : t

Γ ` pureM e : Mt HO—(2)

Γ ` e : s → t

Γ ` mapM e : Ms → Mt

Γ ` e : M(Mt)
Γ ` joinM e : Mt

Γ ` e : t

Γ ` pureM e : Mt (3)

Or, in a non-strict higher-order setting:

let : MX → (X → MY) → MY

pure : X → MX

extend : (X → MY) → MX → MY

pure : X → MX

map : (X → Y) → MX → MY

join : M(MX) → MX

pure : X → MX

7

6 Comonads

Envr t = r × t

pureEnvr
(r, e) = e

extendEnvr
f = λ(r, x). (r, f (r, x))

ask : Envr t → r

ask (r, x) = r

Line t = Stream t× t× Stream t

pureLine (l, e, r) = e

extendLine f = λx. (map f (iterate left x),
f x,

map f (iterate rightx))

left, right : Line t → Line t

left ((a, l), o, r) = (l, a, (o, r))
right (l, o, (a, r)) = ((o, l), a, r)

8

A Ideas

Monads: construction / effects

Failure A + 1
Error A + E

Nondeterminism (sets) PωA

Probability (discrete) ΠωA

Entropy 2ω → A× 2ω

State S → A× S

Environment/reader S → A

Monoid/writer A× S

Continuation (A → R) → R

Input µX.A + (I → X) ∼= I∗ → A

Output µX.A + (O ×X) ∼= A×O∗

Modalities 3ϕ

Syntax / substitution
Local state?

Comonads: observation / context dependency (overview in [UV08])

Environment/reader
Exceptions [N05]
Intensional semantics [BG92]
Replication in linear λ

Codata [K99]
Implicit parameters / dynamic scope [LLMS00]
Redecoration [UV02]
Signals [UV05]
Dataflow [UV06]
Attribute grammers [UV05]

Cellular automata: http://blog.sigfpe.com/2006/12/evaluating-cellular-automata-is.html
Entropy: http://hackage.haskell.org/package/comonad-random-0.1.2
Many more: http://hackage.haskell.org/package/category-extras-0.53.5

9

