
	 1	

Table of Contents

1.Introduction:	 ..	 2	
1.1	 Understanding Terminologies:	 ..	 3	

1.1.1 Refutation	 ..	 3	
1.1.2 Strengthening	 ...	 3	
1.1.3 Agreement	 ...	 3	
1.1.4 Example:	 ..	 4	

2. Making a clever avatar:	 ..	 4	
2.1. Tips	 To	 Design	 Clever	 Avatars:	 ..	 5	

3. Compiling and running Admin & Avatar:	 ...	 6	
3.1 Admin: Building and running the Admin.	 ...	 6	
3.2 Avatar: Running an Avatar	 ...	 6	

4. Managing Tournaments & Users	 ..	 7	
4.1 Tournament Management:	 ..	 7	
4.2	 Configuration	 files:	 ..	 7	
4.3	 User	 Management:	 ...	 9	

5. Smart History:	 ..	 9	
5.1. Understanding Smart History files:	 ...	 9	

	

	 2	

1.Introduction:

This guide provides a description of playgrounds, which are environments for learning
and innovation. Playgrounds with a teacher are good for learning and playgrounds
without a teacher are for innovation. A teacher has all the correct answers. Playground
designers will be provided with SCG Playground Designer Guide to design
playgrounds.

This Avatar Designer Guide assumes that readers know the quantifier game: An
operational approach to predicate logic, focusing on how a claim is defended rather than
whether it is true. Every predicate logic claim is translated into a game between two
players.

To learn about computational problems and their efficient solution and robust
implementation, you have to implement an avatar with your knowledge about how to
solve a certain computational problem to play certain quantifier game. In this Guide, we
introduce the knowledge needed to implement avatars in playgrounds of SCG.

In SCG, we are interested in solve functions for computational problems that translate
instances to solutions. The instances must belong to an InstanceSet and a solution must
satisfy a valid predicate for a given instance.

The purpose of SCG is to find good solution to the given problem and implement them
reliably in an avatar.

What is a playground?
A playground is an arena where avatars play tournaments, which are organized by admin.
Avatars are software programs written by developers like us and they play each other by
proposing claims, refuting, strengthening or agreeing to claims.

For example, we have a set of claims of the form:

C(k,f(k)) where k is some value and f is a function with range [0,1]. K defines a family of
instances. The claim C(k,f(k)) claims, for example, that for all instances satisfying
property k there is a solution of quality f(k).

	 3	

1.1 Understanding Terminologies:

Defending one's own claims and refuting or strengthening other's claims wins reputation.

1.1.1 Refutation

A	 user	 refutes	 a	 claim	 if	 he/she	 thinks	 the	 claim	 is	 not	 true.	 If Bob successfully refutes
the claim, Bob wins reputation and Alice loses reputation. If Alice successfully defends
her claim, Alice wins reputation and Bob loses reputation.

1.1.2 Strengthening

A	 user	 strengthens	 a	 claim	 if	 he/she	 thinks	 the	 quality	 of	 the	 claim	 is	 not	 optimum.
If Bob successfully defends his strengthened claim, Bob wins reputation and Alice loses
reputation. Otherwise if Bob fails to defend his strengthened claim, Alice wins reputation
and Bob loses reputation.

1.1.3 Agreement
A	 user	 agrees	 to	 a	 claim	 when	 he/she	 is	 convinced	 that	 the	 claim	 is	 true. If Bob
agrees on claim C with Alice, the following conditions should hold true:

Bob must defend C against Alice.
Bob must refute !C (i.e., the negated claim of C).
If Bob fails to satisfy any one of the above conditions, then Bob loses reputation and
Alice wins reputation.

Similarly Alice must satisfy the following conditions:
Alice must defend C against Bob.
Alice must refute !C with Bob as the defender.
If Alice fails to satisfy any one of the above conditions, then Alice loses reputation and
Bod wins reputation.

If both Alice and Bob satisfy all their conditions, the reputations remain unaffected and
the claim goes into the social welfare set (i.e., the claim repository).

	 4	

1.1.4 Example:

Let us consider a simple playground as an example.

Definition:
 ∀a,b ∈ [1, 10] ∃ c: a + b = c
Here,
 Instance will be (a, b)
 Solution will be a + b

Let us say that Alice makes a claim and Bob has option to either agree or refute.
Consider two claims as an example:
 Claim1: (1..10, 1..10, 2..20)
 Claim2: (1..10, 1..10, 2..5)

Case 1: Alice makes Claim1. According to the claim, a and b can have any value

between 1 and 10. And c is in the range 2..20, which satisfies the condition that
for any value of a and b ∈ [1, 10], c ranges from 2 to 20. Thus, this claim is
true. Bob has to agree to this claim.

Case 2: Alice makes Claim2. In this case, a and b ∈ [1, 10] and c is in the range 2..5.

When we take a = 10 and b = 10, c = 20 which doesn’t fall in the range as
claimed. So, Bob can refute this claim by providing Alice with the above
instance of a and b for which the values of c doesn’t satisfy the given range.

2. Making a clever avatar:
	
The students are provided with the clever avatar template and baby avatar. The files are
located under GenericSCG/src/hsr/avatar/. Students have to fill in the template of clever
avatar by following steps below:

Step 1: No changes required for .cd file.

Step 2: .beh file has following methods, which need to be modified to make a clever
avatar:

List<Claim> propose(List<Claim> forbiddenClaims): The “propose” method is used to
make new claims during competitions. Propose function implementation is provided. No
changes required for this function.

	 5	

List<OpposeAction> oppose(List<Claim> claimsToBeOpposed): The “oppose” method
is used to respond to the claims of the proposer. The claims are given in the input
parameter claimsToBeOpposed. For every claim from the proposer, avatar has to take
one of the following oppose action:

1. Refute
2. Agree
3. Strengthen

The oppose function in clever avatar template needs to be updated with appropriate
oppose actions.

InstanceI provide(Claim claimUsed):
The “provide” method is used to provide an instance for the given claim. In clever avatar
template, provide function implementation is provided. No changes are required for this
function.

SolutionI solve(SolveRequest solveRequest):
The “solve” method is used to provide solution for the instance provided by opposition.
This method has to be updated with solve logic in clever avatar template.

2.1. Tips	 To	 Design	 Clever	 Avatars:
While making a clever avatar, users have to make sure to provide legitimate instances
and solutions. Otherwise the avatar will be kicked out of the tournament.

Following are the checks that will be performed by admin:

1. Instance and solution Validity check: The “isInvalidInstanceOrSolution” method
is used to check if the instance/solution provided by the avatar is valid. Otherwise
avatar will be kicked out

2. Quality check: The “quality” method is used to calculate the quality of the
solution provided for this Instance object. It returns the quality as double between
0 to 1 (with 0 being the least quality and 1 being the max quality).

3. BelongsTo check: The “belongsTo” method checks if the instance provided by

the player corresponds to the InstanceSet. Otherwise avatars will be kicked out of
the tournament.

4. New Claim check: The “getProposedClaimMustBeNew” method checks if the
proposed claims are new. If they are not new, avatar will be kicked out of the
tournament. In the code example section, it is illustrated how to make sure the
claims are always new.

	 6	

5. Valid Number Of Claims check: While creating a tournament, we provide
configuration parameters specific to a playground. For example in HSR
playground, the parameters, minProposals and maxProposals are set to two and
five respectively. So the valid number of claims avatar should make in a round is
in a range from two to five.

6. Valid Request check: Avatars have to take action when it is their turn. Otherwise

avatars will be kicked out of the tournament.

3. Compiling and running Admin & Avatar:

3.1 Admin: Building and running the Admin.
Step 1: Execute build.xml:

 Location: /GenericSCG

 Command: ant

Step 2: Run the Admin

 Location: GenericSCG/bin

Command: java -cp .:demeterf.jar:hamcrest-all- 1.3.0RC2.jar scg.admin.Admin
<admin password>

3.2 Avatar: Running an Avatar
You	 need	 a	 minimum	 of	 2	 players	 for	 a	 tournament.	 So	 run	 2	 instances	 of	
PlayerMain	 class,	 when	 testing:	
	
Step 1: Generate Java files using Demeterf

 Location: GenericSCG

Command: java -cp .:demeterf.jar:hamcrest-all-1.3.0RC2.jar demeterf
<./src/dds/avatar/ddsAvatar.cd> <./src/dds/avatar/ddsAvatar.beh>
<outputfolder>

Step 2: Build the source files

 Location: /GenericSCG

 Command: ant

	 7	

Step 3: Run the avatar

 Location: /GenericSCG/bin

Command: java -cp .:demeterf.jar:hamcrest-all-1.3.0RC2.jar
scg.net.avatar.PlayerMainDDS <random-port> <server-name> <team-
username> <team-password> <tournamentID>

DDS must be replaced by playground acronym. Make sure the admin and avatars are
running on the same network.

4. Managing Tournaments & Users
In	 order	 for	 avatars	 to	 play	 against	 each	 other,	 the	 admin	 must	 setup	 a	 tournament	
with	 specific	 configuration	 parameters.	 Following	 are	 the	 steps	 the	 admin	 performs:	

 4.1 Tournament Management:
1. Once the server is up and running, open the URL http://server-url:7007/signin

(example: http://localhost:7007/signup, server is running locally). We are also
planning to setup tournaments where you will get to play against teacher avatar,
which is very competent and provides best solutions. Students should plan to
participate in these tournaments to test their clever avatars. The tournaments will
be hosted at http://tvtennis.ccis.neu.edu:7007/signup

2. Enter the username: root and password: password given while executing Admin
class

3. Create a new tournament by filling in all the required fields.
a. Please refer section 2.2 to get the configuration file for a particular

playground.
4. All the users who are willing to participate in the tournament must enroll in a

particular tournament and then run their avatar (Step 3 of 1.2 should be done after
enrolling into a tournament)

4.2	 Configuration	 files:	

The below configuration has to be used while creating the tournaments. Configuration is
specific to a playground.

1. MMG:
scg_config[
domain:mmg.MMGDomain
protocols: scg.protocol.ForAllExistsMax
tournamentStyle: full round-robin
turnDuration: 60 //seconds
maxNumAvatars: 20
minStrengthening: 0.001
initialReputation: 100.0
maxReputation: 1000.0

	 8	

reputationFactor: 0.4
minProposals: 2
maxProposals: 5
numRounds: 6
proposedClaimMustBeNew: true
minConfidence: 0.5
]
mmg.MMGConfig {{ mmg_config[] }}

2. BFS:
scg_config[
domain:bfs.BFSDomain
protocols: scg.protocol.ForAllExistsEqual
tournamentStyle: full round-robin
turnDuration: 60 //seconds
maxNumAvatars: 20
minStrengthening: 0.001
initialReputation: 100.0
maxReputation: 1000.0
reputationFactor: 0.4
minProposals: 2
maxProposals: 5
numRounds: 6
proposedClaimMustBeNew: true
minConfidence: 0.5
]
bfs.BFSConfig {{ bfs_config[] }}

3. HSR:

scg_config[
domain:hsr.HSRDomain
protocols: scg.protocol.ForAllExistsMin
tournamentStyle: full round-robin
turnDuration: 60 //seconds
maxNumAvatars: 20
minStrengthening: 0.001
initialReputation: 100.0
maxReputation: 1000.0
reputationFactor: 0.4
minProposals: 2
maxProposals: 5
numRounds: 6
proposedClaimMustBeNew: true
minConfidence: 0.5
]
hsr.HSRConfig {{ hsr_config[maxN: 1000] }}

	 9	

4.3	 User	 Management:	
In	 order	 to	 play	 in	 a	 tournament,	 a	 player	 needs	 to	 enroll	 with	 the	 admin	 and	 sign-‐
up	 for	 a	 tournament.	 Here	 are	 the	 steps	 to	 do	 that:	
	

2. Sign up: Open the URL http://server-url:7007/signup to sign-up and user has to
wait until Admin approves the request.

3. Sign In: Once the admin has approved the sign up request, user can login. The
URL for login page is http://server-url:7007/signin

4. Approve/Remove users:
Administrator can approve or remove users directly from the admin control
panel. After logging in, pending users (i.e., “users awaiting approval”) will be
shown on the right. Additionally, the administrator can elect to remove users that
had previously been approved.

5. Smart History:

5.1. Understanding Smart History files:

Consider a sample paragraph of the smart history file from a MMG game. Let us try and
understand each line and field means.

SAMPLE 1:
claim mmg.MMGInstanceSet {{ }} scg.protocol.ForAllExistsMax {{ }}
0.5707252354898215 1.0
proposer {{ navi }}
opposer {{ dexter }}
action strengthening 0.5807252354898215
responses provider {{ navi }} pr provide mmg.MMGInstance {{ 0.05 }}

	 10	

provider {{ dexter }} pr solve mmg.MMGSolution {{ 0.046511853922261426 }}
winner {{ dexter }}
pointsWon 1.0

SAMPLE 2:
claim mmg.MMGInstanceSet {{ }} scg.protocol.ForAllExistsMax {{ }} 0.106 1.0
proposer {{ dexter }}
opposer {{ navi }}
action agree
responses provider {{ navi }} pr provide mmg.MMGInstance {{ 0.05 }}
provider {{ dexter }} pr solve mmg.MMGSolution {{ 0.4648488775874373 }}
winner {{ dexter }}
pointsWon 1.0

SAMPLE 3:
claim mmg.MMGInstanceSet {{ }} scg.protocol.ForAllExistsMax {{ }}
0.7323630210011601 1.0
proposer {{ navi }}
opposer {{ dexter }}
action refuting
responses provider {{ navi }} pr provide mmg.MMGInstance {{ 0.3 }}
provider {{ dexter }} pr solve mmg.MMGSolution {{ 0.3158511574800351 }}
winner {{ navi }}
pointsWon 1.0

KEY:
claim INSTANCE SET PROTOCOL QUALITY CONFIDENCE
proposer {{ AVATAR_NAME }}
opposer {{ AVATAR_NAME }}
action ACTION NAME: REFUTE/STRENGTHEN/AGREE STRENGTHENED
CLAIM(if action is strengthening)
responses provider {{ AVATAR_NAME }} pr FUNCTION CALLED
INSTANCE {{ INSTANCE VALUE }}
 provider {{ AVATAR_NAME }} pr FUNCTION CALLED
SOLUTION {{ SOLUTION VALUE }}
winner {{ AVATAR_NAME }}
pointsWon VALUE

	 11	

EXPLANATION:
Consider sample 1. It represents the history of first round out of the 9 rounds
(MAxrounds) between team navi and team dexter
- team navi proposes with a claim of C = 0.5707252354898215
- team dexter opposes by strengthening 0.5807252354898215
- team navi provides with a value of x= 0.5
- team dexter solves with a value of y= 0.046511853922261426
- team dexter wins this round winning 1.0 points.

