
	 1	

Table	 of	 Contents	

1. Compiling and running Server & Avatar:	 ..	 2	
1.1 Server: Building and running the server.	 ..	 2	
1.2 Avatar:	 ..	 2	

2. Managing Tournaments & Users	 ..	 3	
2.1 Tournament Management:	 ...	 3	

2.2 Configuration files:	 ...	 3	
2.3 User Management:	 ...	 5	

3. Making a clever avatar:	 ..	 5	
3.1	 Understanding the terminologies:	 ...	 6	

3.1.1 Refutation	 ...	 6	
3.1.2 Strengthening	 ..	 6	
3.1.3 Agreement	 ..	 7	

3.2	 CodeSamples	 ..	 8	
3.1.1. Avatar’s Class Dictionary template:	 ..	 8	
3.1.2. Avatar’s Behavior definition template:	 ..	 9	

4.	 Smart	 History:	 ..	 11	
4.1.	 Understanding	 Smart	 History	 files:	 ..	 11	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 2	

1. Compiling and running Server & Avatar:

1.1 Server: Building and running the server.
Step 1: Execute build.xml:

 Location: /GenericSCG

 Command: ant

Step 2: Run the server

 Location: GenericSCG/bin

 Command: java -cp .:demeterf.jar:hamcrest-all-1.3.0RC2.jar
scg.admin.Admin <admin password>

1.2 Avatar:
Step 1: Generate Java files using Demeterf

 Location: GenericSCG

 Command: java -cp .:demeterf.jar:hamcrest-all-1.3.0RC2.jar demeterf
<./src/mmg/avatar/mmgAvatar.cd> <./src/mmg/avatar/mmgAvatar.beh>
<gen>

The command shown above is for mmg avatar.

Step 2: Build the source files

 Location: /GenericSCG

 Command: ant

Step 3: Run the avatar

 Location: /GenericSCG/bin

 Command: java -cp .:demeterf.jar:hamcrest-all-1.3.0RC2.jar
scg.net.avatar.PlayerMainMMG <random-port> <server-name> <team-
username> <team-password> <tournamentID>

The command shown above is for mmg avatar.

	 3	

2. Managing Tournaments & Users
These are the following steps to manage users and to start a new tournament.

2.1 Tournament Management:
1. Once the server is up and running, open the URL http://server-

url:7007/signin (example: http://localhost:7007/signup, incase if
server is running locally)

2. Enter the username: root and password: password given while
executing Admin class

3. Create a new tournament by filling in all the required fields.
a. Please refer section 2.2 to get the config file for a particular

playground.
4. All the users who are willing to participate in the tournament must

enroll to a particular tournament and then run their avatar (Step 3 of
1.2 should be done after enrolling into a tournament)

2.2 Configuration files:

The below configuration has to be used while creating the tournaments.
Configuration is specific to a playground.

1. MMG:
scg_config[
domain:mmg.MMGDomain
protocols: scg.protocol.ForAllExistsMax
tournamentStyle: full round-robin
turnDuration: 60 //seconds
maxNumAvatars: 20
minStrengthening: 0.001
initialReputation: 100.0
maxReputation: 1000.0
reputationFactor: 0.4
minProposals: 2
maxProposals: 5
numRounds: 6
proposedClaimMustBeNew: true
minConfidence: 0.5
]
mmg.MMGConfig {{ mmg_config[] }}

	 4	

2. BSF:

config[
domain:bfs.BFSDomain
protocols: scg.protocol.ForAllExistsEqual
tournamentStyle: full round-robin
turnDuration: 60 //seconds
maxNumAvatars: 20
minStrengthening: 0.001
initialReputation: 100.0
maxReputation: 1000.0
reputationFactor: 0.4
minProposals: 2
maxProposals: 5
numRounds: 6
proposedClaimMustBeNew: true
minConfidence: 0.5
]
bfs.BFSConfig {{ bfs_config[] }}

3. HSR:

HSR config
scg_config[
domain:hsr.HSRDomain
protocols: scg.protocol.ForAllExistsMax
tournamentStyle: full round-robin
turnDuration: 60 //seconds
maxNumAvatars: 20
minStrengthening: 0.001
initialReputation: 100.0
maxReputation: 1000.0
reputationFactor: 0.4
minProposals: 2
maxProposals: 5
numRounds: 6
proposedClaimMustBeNew: true
minConfidence: 0.5
]
hsr.HSRConfig {{ hsr_config[] }}

	 5	

2.3 User Management:
1. Sign up: Open the URL http://server-url:7007/signup to sign-up and

wait until the Admin approves your request.
2. Sign In: Once the admin has approved the sign up request, user can

login. The URL for login page is http://server-url:7007/signin
3. Approve/Remove users:

Administrator can approve or remove users directly from the admin
control panel. After logging in, pending users (i.e., “users awaiting
approval”) will be shown on the right . Additionally, the
administrator can elect to remove users that had previously been
approved.

3. Making a clever avatar:
The students would be provided with the baby avatar i.e., a .cd and .beh file.
For example, these two files for MMG playground is located under
mmg.avatar package in GenericSCG .

Step 1: No changes required for .cd file.

Step 2: .beh file has following methods, which need to be modified to make
a clever avatar:

List<Claim> propose(List<Claim> forbiddenClaims): The “propose”
method is used to make new claims during competitions.

	 6	

List<OpposeAction> oppose(List<Claim> claimsToBeOpposed): The
“oppose” method is used to respond to the claims of the proposer. The
claims are given in the input parameter claimsToBeOpposed.

InstanceI provide(Claim claimToBeProvided):
The “provide” method is used to provide an instance for the given claim.

SolutionI solve(SolveRequest solveRequest):
The “solve” method is used to provide solution for the instance provided by
opposition.

3.1 Understanding the terminologies:

3.1.1 Refutation
Alice makes a claim C using protocol P with quality qA and confidence
cfA. Bob refutes C. The protocol P specifies the sequence of actions that are
to be to be performed by Alice and Bob.

Depending on the protocol, either Alice or Bob (or both) will provide an
instance to be solved and a solution for the given instances of claim C. The
quality of the solution(s) and quality qA will be used by the protocol
predicate (i.e., getResult) to determine the outcome of the refutation. The
result of this predicate is a value between 1 and -1. This result is used in
computing the updates to the reputation of the two avatars.

If Bob successfully refutes the claim, Bob wins reputation and Alice loses
reputation. If Alice successfully defends her claim, Alice wins reputation
and Bob loses reputation.

The reputation is updated as below:
Alice’s new reputation = Alice’s current reputation + (cfA * result)
Bob’s new reputation = Bob’s current reputation - (cfA * result)

3.1.2 Strengthening
Alice makes a claim C using protocol P with quality qA and confidence cfA.
Bob strengthens claim C with quality qB and cfB where cfB >= cfA.
Alice refutes this strengthened claim. The refutation follows the steps
specified in the protocol P.

	 7	

If Bob successfully defends his strengthened claim, Bob wins and the
reputation updates are as follows:
Bob’s new reputation = Bob’s current reputation + (cfA * | qA – qB |)
Alice’s new reputation = Alice’ current reputation - (cfA * | qA - qB |)

If Bob fails to defend his strengthened claim, Alice wins and the
reputation updates are as follows:
Alice’s new reputation = Alice’s current reputation + cfB
Bob’s new reputation = Bob’s current reputation – cfB

3.1.3 Agreement
Alice makes a claim C using protocol P with quality qA, confidence cfA.
When Bob agrees on claim C with Alice, the following conditions should
hold true:
Bob must defend C against Alice.
Bob must refute !C (i.e., the negated claim of C). !C has the same
InstanceSet, quality and confidence as C but has a protocol !P with Alice as
defender.

If Bob fails to satisfy any one of the above condition, then Bob loses.
Similarly Alice must satisfy the following conditions:
Alice must defend C against Bob.
Alice must refute !C with Bob as the defender.
If Alice fails to satisfy any one of the above condition, then Alice loses.

If Bob loses, the reputation is updated as follows:
Bob’s new reputation = Bob’s current reputation – cfA
Alice’s new reputation = Alice’s current reputation + cfA
If Alice loses, the reputation is updated as follows:
Alice’s new reputation = Alice’s current reputation – cfA
Bob’s new reputation = Bob’s current reputation + cfA
If both Alice and Bob satisfy all their conditions, the reputations remain
unaffected and the claim goes into the social welfare set (i.e., the claim
repository).

	 8	

3.2 CodeSamples

The code samples below represent a template class dictionary (i.e.,
“ddsAvatar.cd”) and a template behavior definition (i.e., “ddsAvatar.beh”)
needed for a complete avatar definition.

During actual implementation, all the instances of “dds” should be replaced
with an acronym of the playground. For example, HSR playground class
should be named as “hsrAvatar”. Note that file names should also reflect this
change. Therefore, the resulting files in this example would be named
“hsrAvatar.cd” (for the class dictionary) and “hsrAvatar.beh”.

3.1.1. Avatar’s Class Dictionary template:
/* File: ddsAvatar.cd
 (replace all instances of dds, including the file name, with a three

letter representation of the domain name) “scg.cd” includes the class
definitions for SCG courts. The SCG class dictionary has meta-level
definitions that specify how each avatar definition cd must be defined
*/

���nogen include "../scg/scg.cd";

 /* This avatar definition will be created within the * dds.Avatar package. ���*/

package dds.Avatar;

/* ���* - Import the SCG package. ���* (necessary to ensure that this avatar is
compatible with the * SCG courts system) ���* - Import the DDS package. ���*
(necessary to ensure that this avatar can interact with ���* dds specific
objects) ���After importing the SCG and DDS packages, you should also import
any additional packages or classes that will be required for the
implementation of methods in your .beh file */ ���

import scg.*;

import dds.*;

// Enter additional “import” statements before this comment.

/* Define a domain design specific Avatar (i.e., ddsAvatar). The ddsAvatar
definition must implement the AvatarI interface. Therefore, AvatarI methods

	 9	

must be defined in your corresponding behavior file (.beh) as part of the
ddsAvatar class (see the template avatar behavior definition for more
details). */

���ddsAvatar = implements AvatarI.

3.1.2. Avatar’s Behavior definition template:

/*File: ddsAvatar.beh
 (replace all instances of dds, including the file name, with a three

letter representation of the domain name) Methods for the ddsAvatar
class.

 The ddsAvatar class must implement the AvatarI interface. Therefore,
the „propose‟, „oppose‟, „provide‟, and „solve‟ * methods must be
implemented.*/ ���

ddsAvatar {{
/*The constructor for the ddsAvatar class contains a Config object.*/

private Config config;
/*The constructor to be called during registration (where you * supply a
Config)*/

public ddsAvatar(Config cfg)
{ config = cfg; }
/*Proposes a List<Claim> that does not include any claims from the given
List<Claim> (i.e., forbidden claims) */ ���

public List<Claim> propose(List<Claim> forbiddenClaims) { ���// Replace
with domain specific logic: ���

return null;

}

// Must return a “List<Claim>” object ���

// Decides what opposition action to take for each claim in the given

	 10	

List<Claim> public List<OpposeAction> oppose(List<Claim>
claimsToBeOpposed) ���{ ���

// Replace with domain specific logic: ���

return null;

// Must return a “List<OpposeAction>” object

���} ���

// Provides a ddsInstance for the given Claim public InstanceI provide(Claim
claimToBeProvided) { ���

// Replace with domain specific logic:

return null;

// Must return a “ddsInstance” object ���

} ���

// Solves (i.e., gives a ddsSolution) for the instance in the given
SolveRequest ���

public SolutionI solve(SolveRequest solveRequest) ���

{

���ddsInstance i = (ddsInstance)solveRequest.getInstance();

// Replace with domain specific logic: ���

return null;

// Must return a „ddsSolution‟ object

}
/*Include helper methods for the “propose”, “oppose”, “provide”, and/or

“solve” methods here (i.e., before the double curly ���* brackets) ���*/
}}

	 11	

4.	 Smart	 History:	
	

4.1.	 Understanding	 Smart	 History	 files:	
	
Consider a sample paragraph of the smart history file from a MMG game.
Let us try and understand each line and field means.

SAMPLE 1:

claim mmg.MMGInstanceSet {{ }} scg.protocol.ForAllExistsMax {{
}} 0.5707252354898215 1.0
proposer {{ navi }}
opposer {{ dexter }}
action strengthening 0.5807252354898215
responses provider {{ navi }} pr provide mmg.MMGInstance {{ 0.05 }}
provider {{ dexter }} pr solve mmg.MMGSolution {{
0.046511853922261426 }}
winner {{ dexter }}
pointsWon 1.0

SAMPLE 2:

claim mmg.MMGInstanceSet {{ }} scg.protocol.ForAllExistsMax {{
}} 0.106 1.0
proposer {{ dexter }}
opposer {{ navi }}
action agree
responses provider {{ navi }} pr provide mmg.MMGInstance {{ 0.05 }}
provider {{ dexter }} pr solve mmg.MMGSolution {{
0.4648488775874373 }}
winner {{ dexter }}
pointsWon 1.0

	 12	

SAMPLE 3:

claim mmg.MMGInstanceSet {{ }} scg.protocol.ForAllExistsMax {{
}} 0.7323630210011601 1.0
proposer {{ navi }}
opposer {{ dexter }}
action refuting
responses provider {{ navi }} pr provide mmg.MMGInstance {{ 0.3 }}
provider {{ dexter }} pr solve mmg.MMGSolution {{
0.3158511574800351 }}
winner {{ navi }}
pointsWon 1.0

KEY:

claim INSTANCE SET PROTOCOL QUALITY
CONFIDENCE
proposer {{ AVATAR_NAME }}
opposer {{ AVATAR_NAME }}
action ACTION NAME: REFUTE/STRENGTHEN/AGREE
STRENGTHENED CLAIM(if action is strengthening)
responses provider {{ AVATAR_NAME }} pr
FUNCTION CALLED INSTANCE {{ INSTANCE VALUE }}
 provider {{ AVATAR_NAME }} pr FUNCTION
CALLED SOLUTION {{ SOLUTION VALUE }}
winner {{ AVATAR_NAME }}
pointsWon VALUE

EXPLANATION:

Consider sample 1. It represents the history of first round out of the 9 rounds
(MAxrounds) between team navi and team dexter
- team navi proposes with a claim of C = 0.5707252354898215
- team dexter opposes by strengthening 0.5807252354898215
- team navi provides with a value of x= 0.5
- team dexter solves with a value of y= 0.046511853922261426
- team dexter wins this round winning 1.0 points.

